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Abstract. In this paper we provide conditions under which a geodesic circle
on a hyperbolic surface admits arbitrarily small geodesically convex neighbor-

hoods. This implies that persistent homology using selective Rips complexes

detects the length and the position of such a loop via persistent homology in
dimensions one, two, or three. In particular, if a surface has a unique systole,

then the systole can always be detected with persistent homology. The existen-

tial results of the paper are complemented the by corresponding quantitative
treatments which explain the parameters of selective Rips complexes and con-

ditions under which the detection occurs via the standard Rips complexes. In

particular, if a surface has a unique systole, then the parameters depend on
the first spectral gap in the length spectrum.

1. Introduction

Persistent homology is a well established tool in theoretical and applied topol-
ogy. It encodes topological and geometric information when combined with Rips
complexes on sufficiently tame metric spaces. While encoding of the homology of an
underlying space is well understood as it happens at small scales, the precise nature
of geometric information carried by persistent homology is not well understood in
most cases. Known results of this nature include one-dimensional persistent homol-
ogy of geodesic spaces (it encodes the shortest homology base by [16, 17]), parts
of persistent homology of ellipses [2] and regular polygons [3], and the complete
homotopy type of the Rips filtration of a circle [1].

Especially [1] is of great interest: it demonstrates that the Rips complexes of
a circle attain the homotopy types of odd-dimensional spheres and thus a one-
dimensional geometric object (a loop) generates higher-dimensional algebraic ob-
jects in persistent homology. This idea has led to [18] in which a theory for the
detection of parts of the persistent homology of a subset within the persistent ho-
mology of the ambient space is presented. In particular, it turns out that under
specific conditions a part of the persistent of a loop in a space can be observed in the
persistent homology of the space itself. While this part consists of odd-dimensional
homology elements in case the underlying loop is a geodesic circle γ (i.e., a circle
equipped with a geodesic metric, see Preliminaries below for more details), it turns
out that an additional two-dimensional homology element may also be generated
from the geometric position of γ when γ is not a member of a shortest homology
base. While this two-dimensional element requires somehow generous conditions of
the neighborhood of γ, it turns out that a modification of Rips complexes allows us
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Figure 1. A scheme of two-dimensional footprint detection as de-
scribed by Theorem 6.1.
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Figure 2. A scheme of three-dimensional footprint detection as
described by Theorem 6.3.

to deduce its appearance under fairly general conditions. The main result of [20]
states that each geodesic circle, which is a locally shortest loop and admits an arbi-
trarily small geodesically convex neighborhood can be detected either with one- or
two-dimensional persistent homology using appropriate selective Rips complexes.

In this paper we consider the results of [18] and [20] in the setting of complete
orientable hyperbolic surfaces: we provide simple conditions under which geodesic
circles induce a two- or a three-dimensional footprint in persistent homology. It
turns out that the somewhat technical conditions of the two mentioned paper can
be deduced from the existence of sufficiently large geodesic charts. For a scheme of
our results see Figures 1 and 2. The technical results leading to such a connection
include the existence of geodesically convex neighborhoods and an introduction of

D̃C isolated loops. The parameters of the results are also quantified (after Theorem
6.1), leading to specific bounds on parameters of required selective Rips complexes
and settings in which the detection takes place with classical Rips complexes. In
particular, when the systole of a surface is unique, we can deduce that the param-
eters of the selective Rips complexes depend on the first spectral gap in the length
spectrum.

The paper consists of two distinct parts. The first part is a treatment of geomet-
rical properties in the context of differential geometry. It contains Preliminaries in
Section 2, Retractible neighborhoods in Section 3 and the existence of geodesically
convex neighborhoods in Section 4. The second part contains the applications to
persistent homology. Section 5 contains preliminaries and adaptations of results on
persistent homology to our setting. In Section 6 the results of the previous sections
are combined to draw the main conclusions of the paper.

2. Preliminaries on differential geometry

Our objects of interest will be orientable smooth hyperbolic (i.e., having poten-
tially non-constant negative Gaussian curvature: K < 0) surfaces equipped with a
Riemannian metric. We will assume that the surfaces are complete. In particular,
the geodesics are defined for all times, and as a consequence, every pair of points
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x, y on a surface with d(x, y) = ` is connected by a shortest geodesic of length
`. We should point out that the term “geodesics” in this paper refers to locally
shortest paths as is common in the context of differential geometry [9, 6], which
is prevalent in this paper. In contrast, term “geodesics” or “geodesic segment” in
some related works of more general metric context [5, 12, 7, 16, 17, 18, 20] refers to
isometric embeddings of intervals. Such paths (and their traces) will be referred to
as shortest geodesic in this paper. A subset of a surface S is geodesically convex if
for each pair of points x, y ∈ S each shortest geodesic between them lies in A.

Given c > 0 let S1
c denote a circle equipped with a geodesic metric (meaning the

distance between any two points on S1
c is the length of a shortest segment between

the points) of circumference c. A geodesic circle on a surface S is an isometric
embedding of S1

c into S for some c > 0. We will frequently identify a geodesic circle
with its trace. Loop α ⊂ S is a bottleneck loop if there exists a neighborhood of
α in which α is the shortest representative of its free homotopy class. The equator
on a sphere is a geodesic circle which is not a bottleneck loop. It is not hard to
construct a bottleneck loop, which is not a geodesic circle.

2.1. Variations of Arc Length. (see [9, p.238 and p.339] for some background)
It is well known that small perturbations of closed geodesics increase the length of

the perturbed path in our setting, which implies that geodesic circles are automat-
ically bottleneck loops. While the formal statement of this fact for our purposes
could be deduced from Theorem 3.1, we recall the argument for the illustrative
purposes.

Let γ(s) : [0, L]→ S be a naturally parametrized smooth loop. A variation is a
smooth map

h : [0, L]× (−ε, ε)→ S
(s, t) 7→ h(s, t)

such that h(s, 0) = γ(s) and h(0, t) = h(L, t) (and the coincidence also holds for all
derivatives). Denote by

V (s) =
∂h

∂t
(s, 0)

the variational vector field. One can associate h to V by h(s, t) = expγ(s)(tV ). Let

L(t) =

∫ L

0

∣∣∣∣∂h∂s (s, t)

∣∣∣∣ ds
be the length of the variation. Then

L′(0) = −
∫ L

0

A(s) · V (s) ds

where A(s) = D
ds
∂h
∂s (this is zero for a geodesic) and

L′′(0) =

∫ L

0

(∣∣∣∣DdsV (s)

∣∣∣∣2 −K(s) |V (s)|2
)
ds.

Here the variational vector field V (s) is orthogonal to γ′(s). As each loop (and its
length) in S can be approximated by a smooth loop, we obtain the following result.

Theorem 2.1. Let γ(s) be a simple closed geodesic on S. If the Gaussian curvature
satisfies K(s) < 0 along the curve then γ is a bottleneck loop.
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Figure 3. Surface has some positive Gauss curvature, but the
geodesics is still minimal.

Proof. By the discussion above L′(0) = 0 along γ and there exists κ > 0 such that
L′′(0) > κ on some tubular neighborhood of γ. Hence every nontrivial variation
strictly increases length. �

Remark. The converse does not hold in general, that is, if every variation increases
length it does not necessarily mean that K(s) is negative.

Suppose that K(s) = cos s− 1
2 and let V (s) = f(s)(γ′(s)× ~n). Then the above

integral for the second derivative is∫ 2π

0

(
f ′(s)2 − (cos s− 1

2
)f(s)2

)
ds .

Write f(s) = a0 +
∑∞
n=1(an cos(ns) + bn sin(ns)) using the Fourier series and the

integral equals

2πa0(
1

2
a0 − a1) +

∞∑
n=1

π(n2 +
1

2
)(a2

n + b2n) =

= π(a0 − a1)2 +
π

2
a2

1 +

∞∑
n=1

π(n2 +
1

2
)b2n +

∞∑
n=2

π(n2 +
1

2
)a2
n .

The minimal value (zero) is clearly attained when all ai, bj = 0, so for every non-
trivial variation the integral is strictly larger than zero even though K(s) is not
strictly negative.

2.2. Geodesic coordinates. (see [15, p.242] for more details on the topic)
Let S be an orientable surface and let γ(v) be a naturally parametrized simple

closed geodesic on S. Let ~A(v) be a vector field along γ, perpendicular to γ and
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γ

γ(v)

Γv(u)

S

Figure 4. Geodesic coordinates.

| ~A(v)| = 1. Let σ(u, v) = Γv(u) be the resulting parametrization of the surface, see
Figure 2.2.

Theorem 2.2 (See [15, Proposition 9.5.1] for a proof). The parametrization σ(u, v) =
Γv(u) is a chart for S in a neighbourhood of any point (0, v) with first fundamental
form given by [

1 0
0 G(u, v)

]
and with G(0, v) = 1 and Gu(0, v) = 0.

To summarize, the parametrization Γv(u) is such that u = const. and v = const.
form an orthogonal system of curves, with Γv(0) is a geodesic curve and Γv0(u) is
a geodesic curve and the first fundamental form is given by[

1 0
0 G(u, v)

]
with G(0, v) = 1 Gu(0, v) = 0 .

Theorem 2.2 describes geodesic coordinates along γ at any point of a geodesic γ.
When γ is a closed geodesic of length ` on an orientable surface, we can combine
these into a consistent geodesic coordinates along γ. In particular, there is a width
ε > 0 and a smooth embedding

H : (−ε, ε)× [0, `]/0'` → S
H : (u, v) 7→ H(u, v) ,

such that H(u, v) = Γv(u). Map H will represent such geodesic coordinates
throughout the paper and will also be referred to as geodesic chart.

3. Retractable neighborhood

The main goal of this section is to formalize the following phenomenon: given a
path α in a geodesic chart around a closed geodesic γ, sliding α “perpendicularly”
towards γ results in ever shorter paths, see Figure 5. This is done by Theorem 3.1:
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(1) First for paths α “parallel” (in terms of geodesic coordinates) to γ.
(2) Then for general paths α.
(3) Finally for sliding α towards a parallel to γ.

Theorem 3.1. Let S be an orientable surface, let γ(v) be a naturally parameterized
simple closed geodesic of length ` on S, and assume the Gaussian curvature K of
S is negative on γ. Choose ε > 0 such that the Gaussian curvature is negative on
the ε-geodesic chart of γ

H : (−ε, ε)× [0, `]/0'` → S
H : (u, v) 7→ H(u, v)

Then the following conclusions hold:

(1) For any a < b ∈ [0, `] the length of the curve H(u1, v), v ∈ [a, b] is strictly
smaller then the length of the curve H(u2, v), v ∈ [a, b] for |u1| < |u2|.

(2) Denote by κt(u, v) = H((1−t)u, v) the deformation retraction of the (image
of the) geodesic chart onto γ. Let H(u(τ), v(τ)), τ ∈ [a, b] be a curve on
S. Then d

dtκt(u(τ), v(τ)) < 0, i.e. the length of the curve κt(u(τ), v(τ)) is
decreasing as t increases from 0 to 1.

(3) Choose 0 < δ < ε. Let H(u(τ), v(τ)), τ ∈ [a, b] be a curve on S with u(τ) ≥
δ. Define νt(u, v) = H

(
(1 − t)u(τ) + tδ, v(τ)

)
. Then d

dtνt(u(τ), v(τ)) < 0,
i.e. the length of the curve νt(u(τ), v(τ)) is decreasing as t increases from
0 to 1.

Proof. (1) In geodesic coordinates (see Theorem 2.2 for the properties that will be
used throughout this argument) the Gaussian curvature is expressed as

K = − 1

2
√
G

(
Gu√
G

)
u

= − 1

2
√
G

Guu√G− G2
u

2
√
G√

G

 ,

by the Brioschi formula. This implies that Guu(0, v) > 0. Since Gu(0, v) = 0 by
the construction of geodesic coordinates, we get that Gu(u, v) > 0 for u > 0 and
Gu(u, v) < 0 for u < 0. In particular G(u, v) > 1 for |u| > 0. The curve H(u0, v),
v ∈ [a, b] has length equal to

L(u0) =

∫ b

a

√
G(u0, v) dv .

Since L′(u0) =
∫ b
a

Gu(u0,v)

2
√
G(u0,v)

dv, L(u) is decreasing for negative u and increasing

for positive u and this means that the length of the curve H(u1, v), v ∈ [a, b] is
strictly smaller then the length of the curve H(u2, v), v ∈ [a, b] for 0 < u1 < u2

(and similarly for u2 > u1 > 0).
(2) The length of the curve is

L(t) =

∫ b

a

√
(1− t)2u′(τ)2 +G((1− t)u(τ), v(τ))v′(τ)2 dτ .

The derivative

dL(t)

dt
=

∫ b

a

−2(1− t)u′(τ)2 +Gu

(
(1− t)u(τ), v(τ)

)
v′(τ)2

(
− u(τ)

)
2
√

(1− t)2u′(τ)2 +G
(
(1− t)u(τ), v(τ)

) dτ
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α γ

Figure 5. Sliding a path α towards γ results in ever shorter paths.

is always negative, since −2(1 − t)u′(τ)2 is clearly negative and Gu is positive for
positive u and negative for negative u. So as t flows from 0 → 1, L(t) decreases.
The proposed deformation retraction κt(u, v) = H((1 − t)u, v) indeed shortens all
paths (Figure 5).

(3) The proof is mostly the same as that of (2). �

Remark: The theorem above deals with the case where K is negative. However,
a version of the theorem for non-negative K can be proved in the same manner:
we could replace negative curvature by non-negative curvature and change all strict
inequalities (except for ε > 0, of course) to non-strict inequalities.

4. Geodesic convexity of neighborhoods

In this section we consider the existence of small geodesically convex neighbor-
hoods of geodesic circles. We will first discuss why some of the assumptions are
necessary for such a statement.

If there is no condition on the Gaussian curvature then the geodesic chart H
(in particular, its image) is not geodesically convex in general. For example, think
about the equator on a sphere, which has no small geodesically convex neighbor-
hood. Even if K ≤ 0 everywhere a geodesic chart is not necessarily geodesically
convex at all widths ε. The surface in Figure 6 has K ≤ 0 everywhere. There is
a (large enough) cylindrical subset of a geodesic circle circumventing any of the
visible holes, that is not geodesically convex. Furthermore, not every simple closed
geodesic is geodesically convex as Figure 7 shows, and the same goes for its small
neighborhoods.

Now that the required conditions are established, we proceed by proving the
existence of geodesically convex neighborhoods provided a wide enough geodesic
chart exists.

Theorem 4.1. Let S be a complete orientable surface with K < 0 and let γ be a
naturally parametrized simple closed geodesics of length `. Suppose that

H ((−D,D)× [0, `]/0'`) ⊂ S

is a geodesic chart around γ, where D > `/4. Then for each δ ≤ D− `4
2 , neighbor-

hood H ((−δ, δ)× [0, `])) is geodesically closed. Furthermore, for each δ′ <
D− `4

2 ,
neighborhood H ([−δ′, δ′]× [0, `])) is geodesically closed.
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Figure 6. Scherk’s singly periodic surface, also called the Scherk-tower.

Proof. The situation is depicted in Figure 8. Choose p, q ∈ H ((−δ, δ)× [0, `]))
and let α be a shortest geodesic between them. Assume α does not lie entirely in
H ((−δ, δ)× [0, `])). We analyse the situation by considering two separate cases:

(1) Assume α lies in H ((−D,D)× [0, `]). Using case (3) of Theorem 3.1 we can
slide the part of α lying outsideH ((−δ, δ)× [0, `])) insideH ((−δ, δ)× [0, `]))
while keeping endpoints p, q intact and decreasing the length of the path.
The result is a path between p and q which is shorter than α, a contradic-
tion.

(2) Assume α does not lie in H ((−D,D)× [0, `]), see Figure 9. On one hand
this means α starts at p, has to reach the complement ofH ((−D,D)× [0, `])
(which is at distance at least `/4 + δ from p) and then has to reach q again
(meaning it has to traverse a distance at least `/4+δ from p again), resulting
in a lower bound `/2 + 2δ for the length of α.

On the other hand we can construct a different path from p to q using γ.
Start at p and follow a geodesic towards γ (of length less than δ) to reach
P0 ∈ γ. In a similar fashion initiate a new path segment by starting at at
q and follow a geodesic towards γ (of length less than δ) to reach Q0 ∈ γ.
Connect P0 and Q0 by a path along γ of length at most `/2. Concatenating
these three paths we obtain a path from p to q of length less than `/2 + 2δ.
This contradicts the lower bound of the previous paragraph.

We conclude that α lies entirely in H ((−δ, δ)× [0, `])).
The statement for closed neighborhoods can be proved in the same way. �
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Figure 7. Closed geodesic which is not geodesically closed and
hence not a geodesic circle.

Remark 4.2. Theorem 4.1 is stated for the case K < 0 as this is one of the assump-
tions of our eventual applications to persistent homology, and the proof of case (1)
follows fairly easily. However, Theorem 4.1 as stated also holds when K ≤ 0. In
order to prove it we only need to modify case (1) of the corresponding proof as
follows.

Assume α = H(u(t), v(t)) : [0, 1] → S lies in H ((−D,D)× [0, `]). Without
the loss of generality we may assume that p = H(δ, vp) = H(u(0), v(0)), q =
H(δ, vq), H(u(1), v(1)) for some δ < D, and u(t) > δ, ∀t ∈ (0, 1). The length of
α equals

L1 =

∫ 1

t=0

√
u′2 +G(u(t), v(t)) · v′2dt.

By the same reasoning the length of the projection of α onto H([−δ, δ] × [0, `])
equals

L2 =

∫ 1

t=0

√
G(δ, v(t)) · v′2dt.

By the assumptions:

(1) u′ is non-zero at some interval as u(t) > δ, ∀t ∈ (0, 1), and
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γ

δ

δ
`/4

Figure 8. Setup of Theorem 4.1.

γ

p

q

γ

p

q

Figure 9. A sketch of a part of the proof of Theorem 4.1. If
a shortest geodesic between p and q reaches the complement of
H ((−D,D)× [0, `]) as depicted on the left, then there exists a
shorter path between the two points (on right) along γ.

(2) G(u(t), v(t)) ≥ G(δ, v(t)) as G(0, v) = 1 and Gu(u, v) > 0 for u > 0 (see
part (1) of the proof of Theorem 3.1).

As a consequence, L1 > L2.

The conditions of Theorem 4.1 contain the size of a geodesic chart. Throughout
the rest of this section we explain how this condition may be dropped in the case
of unique shortest closed geodesic on a surface.

We first recall the Cartan-Hadamard Theorem in Riemannian geometry.

Theorem 4.3. Let S be a complete surface with K ≤ 0 and p ∈ K. Then the map

expp : TpS → S p ∈ S
is a universal covering projection.

Theorem 4.4. Let S be a complete orientable surface with K ≤ 0 and let γ be a
simple contractible loop. Then γ bounds a simple region (diffeomorphic to disc) in
S.

Proof. Let γ be a simple contractible loop. Then the lift to the universal covering
space is also a simple loop γ̃. By the Jordan-Schönflies Theorem γ̃ bounds a simple
region D.

We now intend to prove that the covering projection restricted to D is injective.
For each non-trivial deck transformation g on the universal cover we have γ̃∩g(γ̃) =
∅ as γ is simple. Furthermore, if g(D) ⊆ D, then g would have a fixed point
(any point of the

⋂
n∈N g

n(D) 6= ∅ is a fixed point by a standard argument), a
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contradiction. Hence D ∩ g(D) = ∅ and thus the covering projection is injective
on D. Consequently, the image of D by the covering projection is a homeomorphic
image of D, whose boundary (in S) is γ. �

The (unmarked) length spectrum of a manifold is the collection of lengths of all
closed geodesics. Each compact complete hyperbolic manifold has a discrete length
spectrum. For a proof see, for example, [4, Lemma 3.1 and Remark 3.2]. Each
shortest closed geodesic in a manifold is called systole. Each systole is a geodesic
circle. The length of a systole is hence the first value of the length spectrum.

Proposition 4.5 combined with Remark 4.6 states that if the systole of a hyper-
bolic surface is unique, a choice of D as in Theorem 4.1 can be made.

Proposition 4.5. Let S be a compact complete orientable surface with K ≤ 0. As-
sume a closed loop γ of length ` is the unique systole of S and L > ` is the second
value of the length spectrum, i.e., each closed loop of length less than L is either
contractible or homotopic to γ.

Then parameter D of Theorem 4.1 can be chosen to be D = L/2 − `/4 > L/4,
i.e.,

H ((−D,D)× [0, `]/0'`) ⊂ S
is a geodesic chart around γ.

Remark 4.6. Before we embark on the proof of Proposition 4.5 we briefly explain
why a choice of L in as assumed in Proposition 4.5 always exists if γ. As S compact
then, as was mentioned before Proposition 4.5, the length spectrum of S is discrete
and hence L can be chosen to be the second value of the length spectrum (and use
the fact that each non-contractible loop has a representative as a closed geodesic).
In particular, the pair `, L represents the first spectral gap of the length spectrum.

Proof of Proposition 4.5. We need to prove that H is injective on (−D,D)× [0, `].
Assume on the contrary, that there existsD′ < D such that there exist two geodesics
which:

• start at points p, q ∈ γ;
• are perpendicular to γ at these points;
• have their first point of intersection at z with d(z, γ) = D′.

See Figure 10 for a sketch one such situation. The corresponding geodesic segments
(from z to p and q, and a shortest segment from p to q along γ) form a geodesic
triangle T with angles being π/2, π/2 and a non-trivial angle. Triangle T as a loop
is of length at most D + D + `/2 < L hence T is contractible. By Theorem 4.4
T bounds a disc. By the Gauss-Bonnet Theorem we get that

∫∫
D
KdS > 0, a

contradiction. �

5. Preliminaries on persistent homology and footprint detection

Persistent homology is a type of parameterized version of homology. Ever since
its introduction two decades ago the corresponding theory and applications wit-
nessed intense development that expanded onto other fields of mathematics and
science. For a general exposition on the topic see [10]. In this paper we will focus
on a specific setting of hyperbolic surfaces. On the other hand, our treatment will
be slightly more general than the standard approaches in persistent homology as we
will not restrict our choice of coefficients to fields. We proceed by briefly presenting
our setting. For a similar setting see [16, 17, 18, 20].



12 BLAŽ JELENC AND ŽIGA VIRK

γ

p

q
z

Figure 10. A sketch of a part of the proof of Proposition 4.5:
two geodesics perpendicular to γ having z as the first point of
their intersection. Note that geodesics could also emerge from γ in
different directions.

Let X be a metric space and fix a scale r > 0. The Rips complex Rips(X; r) is
an abstract simplicial complex with the vertex set X defined by the following rule:
a finite σ ⊂ X is a simplex iff Diam(σ) < r.

Definition 5.1. [20] Let Y be a metric space, r1 ≤ r2, n ∈ N. Selective Rips complex
sRips(Y ; r1, n, r2) is an abstract simplicial complex defined by the following rule: a
finite subset σ ⊂ Y is a simplex iff the following two conditions hold:

(1) Diam(σ) < r1;
(2) there exist subsets U0, U1, . . . , Un ⊂ U of diameter less than r2 such that

σ ⊂ U0 ∪ U1 ∪ . . . ∪ Un.

The collection of Rips complexes of X for all positive r > 0 can be assem-
bled together into the Rips filtration {Rips(X; r)}r>0 of X consisting additionally
of bonding maps ir1,r2 : Rips(X; r1) → Rips(X; r2), which are natural inclusions
(identities on vertices) for all r1 < r2. Obtaining a filtration of selective Rips com-
plexes we are required to make a more specific choice of positive increasing functions
r1(t) ≤ r2(t).

Persistent homology is obtained by applying the homology functor to any filtra-
tion. When coefficients of a homology form a field the resulting persistent homology
may under appropriate conditions (for example, if X is finite) be presented by a
collection of intervals, which give rise to two know visualizations of persistent ho-
mology: persistence diagram and barcodes (see [10] for details).

5.1. Geodesic circles and persistent homology. We next present the known results
which explain how geodesic circles in Riemannian manifolds generate algebraic ob-
jects (footprints) in persistent homology in various dimensions. Let γ be a geodesic
circle of length ` in a Riemannian surface X and fix coefficients G for all homol-
ogy groups in this section. Theorem 5.2 states that if γ is a member of a shortest
homology base, then it induces a one-dimensional footprint which dies at |γ|/3. In
this case it is the topological nature of γ that induces the footprint and hence the
name topological footprint.

Theorem 5.2. [16] [Generating 1-dimensional (topological) footprint] Let X be a
compact semi-locally simply connected geodesic space and let G be an Abelian group.
If γ is a member of a shortest homology base, then for each r > 0 a discretization
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of γ (called r-sample of γ in [16]) at scale r represents a homology class Qr ∈
H1(Rips(X; r);G) such that:

• for each r1 < r2 the inclusion Rips(X; r1)→ Rips(X; r2) induced map maps
Qr1 to Qr2 , and
• Qr 6= 0 iff r < |γ|/3.

However, the focus of this paper is to also detect geodesic circles which are not
contained in any shortest homology base and to detect γ via higher-dimensional
homology.

In [18] a generic method for detecting γ through higher dimensional persistent
homology is described. The result is inspired by [1], in which authors demonstrate
that the homotopy type of a circle via Rips complexes attains all even dimensional
spheres. It turns out that this result may be used to prove that γ ⊂ X sometimes
induces even-dimensional homology elements in persistent homology of X via Rips
filtration. Additionally, two-dimensional elements may also appear when γ is not
a member of a shortest homology base. It turns out that these two-dimensional
elements appear under very weak assumptions if selective Rips complexes are used
[20].

We continue by providing technical prerequisites, details and adjustments of
these two results as we will later combine them with the results of the previous
sections.

5.2. Detection via selective Rips complexes. We start with detection results via
selective Rips complexes as described in [20]. Despite being chronologically more
recent than the approach via deformation contractions described in the following
subsection, we describe this setting first due to its simplicity. Broadly speaking,
it turns out that each γ which is a geodesic circle, a bottleneck loop and has
arbitrarily small convex neighborhood can be detected either with 1-dimensional
persistent homology (in case γ is a member of a shortest homology base by [16]) or
by a 2-dimensional persistent homology via selective Rips complexes. In this case
it is the geometric property of a neighborhood of γ that induces the footprint in
the absence of a topological footprint and hence the name geometric footprint.

Theorem 5.3. [20] [Generating 2-dimensional (geometric) footprint] Let X be a
geodesic locally compact, semi-locally simply connected space and let G be an Abelian
group. Assume α is a geodesic circle in X satisfying the following properties:

(1) α is a bottleneck loop;
(2) α is homologous to a non-trivial G-combination of loops β1, β2, . . . , βk of

length at most |a|, none of which is homotopic to α or α−;
(3) α has arbitrarily small geodesically convex neighborhood.

Then there exist bounds B1 > |α|/3 and B2 > 0 such that for all increasing bijec-
tions a ≥ b : (0,∞) → (0,∞), and for all r > 0 such that B1 > a(r) > |α|/3 and
B2 > b(r), there exists a non-trivial

Qr ∈ H2(sRips(X; a(r), 2, b(r));G)

satisfying the following properties:

(1) ∀r1 < r2 with a(ri) > |α|/3 and b(ri) < B,∀i, we have iGr1,r2(Qr1) = Qr2 ,

where iGr1,r2 : H2(sRips(X; a(r1), 2, b(r1));G)→ H2(sRips(X; a(r2), 2, b(r2));G)
is the natural inclusion induced map.

(2) ∀q : a(q) ≤ |α|/3 there exists no Qq with iq,r(Qq) = Qr.
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γ
γ′ γ′′

Figure 11. A D̃C-isolated loop γ.

5.3. Detection via Rips complexes. The second way of detection was described in
[18] and works in a fairly general setting. For our purposes we will adapt the
results of [18] to our setting. We start by defining deformation contractions, i.e.,
maps inducing homotopy equivalence on Rips complexes (observe relation with
retractable neighborhoods in Section 3, it will be employed later).

Definition 5.4. [13, 18] Let X be a metric space and A ⊂ X. A continuous map
F : X × [0, 1]→ X is called a deformation contraction (we will abbreviate it as DC

and write X
DC−−→ A) if:

(1) F (x, 0) = x, F (x, 1) ∈ A,F (a, t) = a,∀x ∈ X, a ∈ A, t ∈ [0, 1], and
(2) d(F (x, t′), F (y, t′)) ≤ d(F (x, t), F (y, t)),∀x, y ∈ X, t′ > t.

If additionally d(F (x, t′), F (y, t′)) < d(F (x, t), F (y, t)) holds for all pairs (x, y) ∈
(X \ A) × X and for all t′ > t, then F is called a strict deformation contraction

(SDC or X
SDC−−−→ A).

Proposition 5.5. [18] Suppose X
DC−−→ A via a map F . Then the inclusions Rips(A; r) ↪→

Rips(X; r) are homotopy equivalences for each r > 0.

A local property used in [18] to deduce detection of a loop is that of DC-isolation
(deformation contraction isolated). For our purposes a minor modification of this

property D̃C will be more useful.

Definition 5.6. Suppose 0 < D1 ≤ D2. A loop γ ⊂ S in a complete surface with

K ≤ 0 is D̃C(D1, D2)-isolated if the following conditions hold for closed geodesic
neighborhoods N1 = N(γ,D1/2) and N2 = N(N1, D2) of γ:

(1) N2 is geodesically convex.
(2) Sliding along geodesics perpendicular to γ towards γ in a geodesic chart N2

(see Figure 5 and (2) of Theorem 3.1) induces N2 \ Int(N1)
SDC−−−→ ∂N1 and

N1
SDC−−−→ γ, see Figure 11.

Note that if γ is D̃C(D1, D2)-isolated then N(γ, r) is geodesically convex for
each r ≤ D2 by Theorem 3.1.

Proposition 5.7. Let 0 < D1 ≤ D2 and suppose a loop γ ⊂ S in a complete surface

with K ≤ 0 is D̃C(D1, D2)-isolated. In this case the boundary ∂N1 consists of two
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Figure 12. A sketch the setting of Proposition 5.7.

simple closed loops denoted by γ′, γ′′, see Figure 11. For each p ∈ γ let p′ and p′′

denote the points on γ′ and γ′′ respectively, which are closest to p, see Figure 12.
Then the following two statements hold:

(1) There exists D′ > |γ|/3 such that for each p, q ∈ γ with d(p, q) ≥ |γ|/3 we
have d(p′, q′) > |γ|/3 +D′ and d(p′′, q′′) > |γ|/3 +D′.

(2) For each r ∈ (|γ|/3, D′) the inclusion induced maps Rips(γ′; r) ↪→ Rips(N1; r)
and Rips(γ′′; r) ↪→ Rips(N1; r)are homotopically trivial.

Proof. (1) Map (p, q) 7→ d(p′, q′) is continuous and (by Definition 5.6) does not
attain value |γ|/3 on a compact domain {(p, q) ∈ γ; d(p, q) ≥ |γ|/3} hence it has
a lower bound above |γ|/3. The same holds for γ′′ and the minimum of these two
lower bounds is D′.

(2) By Proposition 5.5 we have Rips(N1; r) ' Rips(γ; r) with the homotopy
equivalence arising from our setting (see Definition 5.6) mapping p′ 7→ p. Thus
Rips(γ′; r) ↪→ Rips(N1; r) is homotopic to a map Rips(γ′; r)→ Rips(γ; r) mapping
p′ 7→ p. By (1) the image of this map is actually contained in Rips(γ; |γ|/3), which is
homotopy equivalent to the circle by [1]. On the other hand, Rips(γ; r) is homotopy
equivalent to a sphere of dimension at least three by [1], hence the map in question
is nullhomotopic. �

The property of being DC-isolated was used in [18] to deduce an appearance
of odd-dimensional homology elements. In a similar fashion we can prove a sim-

ilar result for D̃C isolated loops in our setting. In this case the combinatorics of
Rips complexes from [1] induces the footprint and hence the name combinatorial
footprint.

Theorem 5.8. [Generating 3-dimensional (combinatorial) footprint via Rips com-

plexes] Suppose S is a complete orientable surface with K ≤ 0, γ is a D̃C(D,D)
isolated geodesic circle for some D ∈ (|γ|/3, 2|γ|/5), and G is a group. Then there
exists D′ ∈ (|γ|/3, 2|γ|/5) such that the inclusion γ ↪→ X induces an inclusion

{G}r∈(|γ|/3,D′)
∼= {H3(Rips(γ; r);G)}r∈(|γ|/3,D′) ↪→ {H3(Rips(X; r);G)}r∈(|γ|/3,D′).

In particular, for each r ∈ (|γ|/3, D′) there exists a non-trivial

Qr ∈ H3(Rips(X; r);G)

such that:
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Figure 13. A scheme of a geometric footprint detection.
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Figure 14. A scheme of combinatorial footprint detection.

(1) ∀r1 < r2 from (|γ|/3, D′) we have iGr1,r2(Qr1) = Qr2 , where

iGr1,r2 : H3(Rips(X; r1);G)→ H3(Rips(X; r2);G)

is the natural inclusion induced map.
(2) ∀q : a(q) ≤ |γ|/3 there exists no Qq with iq,r(Qq) = Qr.

Proof. Note that {G}r∈(|γ|/3,D)
∼= {H3(Rips(γ; r);G)}r∈(|γ|/3,D) follows from [1] as

Rips(γ; r) ' S3,∀r ∈ (|γ|/3, D). Choose D′ as in Proposition 5.7.
We set a Mayer-Vietoris long exact sequence using the notation of Definition 5.6.

For a fixed r ∈ (|γ|/3, D) define

A = Rips(N2; r) ' Rips(γ; r),

B = Rips(S \ Int(N1); r).

Note that

A ∩B = Rips(N2 \ Int(N1); r) ' Rips(γ′; r) t Rips(γ′′; r)

as γ′ and γ′′ are at distance more than r, and A ∪ B = Rips(S; r) as each subset
of S of diameter less than r is contained either in N2 or S \ Int(N1). From the
Mayer-Vietoris sequence we extract the following exact subsequence:

H3(A ∩B;G)→ H3(A;G)⊕H3(B;G)→ H3(Rips(X, r);G).

By (2) of Proposition 5.6 the first map is trivial, which implies that the second map
is an inclusion on H3(A;G) = H3(Rips(γ; r);G). The formal conclusion follows
from the functoriality of the Mayer-Vietoris sequence. �

6. Final results

In this section we combine the geometric results of initial sections with the foot-
print detection results of Section 5 to describe detection (footprints) of geodesic
circles on hyperbolic surfaces.
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6.1. Results with selective Rips complexes [two-dimensional footprint]. A scheme
of the following result is provided in Figure 13.

Theorem 6.1. Let S be a compact complete orientable surface with K < 0 and let
γ ⊂ S be a geodesic circle. Assume any of the following holds:

(1) H ((−D,D)× [0, `]) ⊂ S is a geodesic chart around γ, where D > |γ|/4.
(2) Loop γ is the unique systole of S.

Then at r = |γ|/3 loop γ induces

(i): a one-dimensional footprint in the sense of Theorem 5.2, or
(ii): a two-dimensional footprint in the following sense: there exists a filtra-

tion of selective Rips complexes through which γ induces a two-dimensional
footprint in the sense of Theorem 5.3.

Remark 6.2. Loops γ may induce both a one- and a two-dimensional footprint in
the sense of Theorem 6.1 if it appears in a shortest homology base of H1(S;G) and
is homologous to a non-trivial G-combination of loops β1, β2, . . . , βk of length at
most |γ|, none of which is homotopic to γ or γ−. In this case γ is not a member of
each shortest homology base of H1(S;G).

Proof. If γ is a member of a shortest homology base, conclusion (i) follows by
Theorem 5.2. If that is not the case, (ii) and the conclusion of Theorem 5.3 follow if
γ is a bottleneck loop (which holds always by Theorem 2.1) and has arbitrarily small
geodesically convex neighborhood. The existence of the later follows either from
Theorem 4.1 for assumption (1), or from Proposition 4.5 for assumption (2). �

Quantification of Theorem 6.1: Concerning conclusion (ii) we discuss the pa-
rameters of selective Rips complexes and conditions under which the induced two-
dimensional footprint can be detected with the usual Rips complexes.

Starting with assumption (1) we have a geodesic chart of width D. Theorem

4.1 implies the existence of a geodesically convex geodesic chart of width T̃ =
D/2−|γ|/8. The quantitative analysis of Theorem 5.3 in [20] implies that a selective
Rips complex satisfies conclusion (ii) if the following holds: for r > 0 at which

a(r) = |γ|/3 we need to have b(r) < T̃ = D/2 − |γ|/8 (recall notation of Theorem

5.3). In particular, the detection occurs with Rips complexes when T̃ > |γ|/3, i.e.,
D > 11|γ|/12.

Continuing with assumption (2) we see that D = L/2 − |γ|/4, where |g| and L
are the first two values of the length spectrum of S and thus L − |γ| is the first
spectral gap. Consequently, a selective Rips complex satisfies conclusion (ii) if the
following holds: for r > 0 at which a(r) = |γ|/3 we need to have b(r) < (L−|γ|)/4,
i.e., the upper bound is the quarter of the first spectral gap. In particular, the
detection occurs with Rips complexes when (L − |γ|)/4 > |γ|/3, i.e., L > 7|γ|/3.
The ability of Rips complexes to detect γ with a two-dimensional footprint hence
depends on the first spectral gap.

6.2. Results with Rips complexes [three-dimensional footprint]. A scheme of the
following result is provided in Figure 14.

Theorem 6.3. Let S be a compact complete orientable surface with K < 0 and let
γ ⊂ S be a geodesic circle. Assume any of the following holds:
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(1) H
(

[−T̃ , T̃ ]× [0, `]
)
⊂ S is a geodesically convex geodesic chart around γ,

where T̃ > 3|γ|/2.
(2) H ((−D,D)× [0, `]) ⊂ S is a geodesic chart around γ, where D > 13|γ|/4.
(3) Loop γ is the unique systole of S with L > 7|γ| being the second smallest

value of the length spectrum.

Then at r = |γ|/3 loop γ induces a three-dimensional footprint in the sense of
Theorem 5.8.

Proof. Assume (1) holds. Then by Theorem 3.1 there exists D̃ ∈ (|γ|/3, 2|γ|/5)

such that γ is D̃C(D̃, D̃) isolated, thus the conditions for Theorem 5.8 are satisfied.
Assumption (2) and Theorem 4.1 imply assumption (1). Assumption (3) and

Proposition 4.5 imply assumption (1). �
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[19] Ž. Virk, Rips complexes as nerves and a Functorial Dowker-Nerve Diagram, Mediterr. J.

Math. 18 (2021).
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