
Gradient descent and quasi-Newton methods

Lecturer: Žiga Virk

Course: Mathematics 2

March 25, 2024

The main goal is to present the gradient descent (GD) procedure,

corresponding theoretical guarantees and a series of modifications

of GD (mostly based on [1] and [2]). We conclude by Newton and

quasi-Newton methods (mostly based on [3]).

Contents

1 Introduction 2

2 Properties of functions 4

Convex functions 4

Lipschitz functions 5

Smooth functions 6

Strongly convex functions 7

Summary 8

3 Guarantees for gradient descent 9

Proofs 11

Summary 13

4 Lower bounds for black box procedures 13

5 Modifications of gradient descent 16

Quadratics 16

Polyak (also called momentum or heavy ball) GD 17

Nesterov GD 19

Stochastic GD 20

AdaGrad GD 21

Summary 23

6 Newton and quasi-Newton methods 23

Newton methods 24

Adaptations to the Newton method 26

Quasi-Newton methods 27

Limited memory quasi-Newton methods 29

Summary 31

gradient descent and quasi-newton methods 2

1 Introduction

MAIN TASK: given a function f find its minimum1x∗, i.e., find x∗ 1 Typically we can’t find it analyt-

ically or an analytic solution is too
time consuming to compute. We will

usually consider convex functions with

a unique minimum.

from the domain of f minimizing f (x).

MAIN STRATEGY: Iterative method, i.e., start with some initial

guess x1 and inductively keep making educated guesses about the next

step, hoping that xk converge to x∗.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 1: The first row shows a

graph of function f (x, y) = 0.3x2 +
0.1y2, its contour plot (level lines)

with the −∇ f gradient field, and its
contour plot with stream lines (lines

following the gradient). Note that

the stream lines always end at the
minimum. This is the effect we want
to replicate in a discrete setting with

GD. Bottom row shows the same
effect for sin(3xy) − cos

(
x2 + y2).

Note that this function has two local

minima in the interior of the displayed
region and six local minima on the
boundary. A stream line can end up

in any stationary point.

Depending on the nature of information used for guessing we have:

• zero-order methods: we use f (bisection, secant method, ...).

• first-order methods: we use f and ∇ f (GD, Quasi-Newton, ...).

• second-order methods: we use f ,∇ f , and Hessian ∇2 f = H f
(Newton method, ...).

We will first focus on GD. Let f : D → R be a differentiable func-

tion with D ⊂ Rn. The idea is that ∇ f points at the direction of the

greatest ascent of f , hence going along the direction −∇ f the func-

tion is decreasing at the highest rate compared to all other directions.

We first choose an initial guess x1 ∈ D and set a parameter γ > 0
(sometimes called learning rate). We then proceed as follows:

The differentiability assumtion could

be relaxed a bit for convex functions

using subgradients (see Bubeck’s
book). In this case GD as described

below still mostly works.

GRADIENT descent GD:

xk+1 = xk − γ∇ f (xk)

gradient descent and quasi-newton methods 3

Example 1.1. Let f (x) = x2 (with the obvious minimum at x = 0) and

choose x0 = 1.

• If γ = 1 then we get a sequence of approximations 1,−1, 1,−1, . . .
so GD does not converge but enters a cyclic behaviour.

• For γ > 1 it is easy to see that |xi| → ∞.

• For 1/2 < γ < 1 GD converges (i.e., xi → 0) in an alternating way,

i.e., in each step the sign of a new approximation xi is changed.

• For γ = 1/2 GD converges in one step, i.e., x2 = 0.

• For γ < 1/2 GD converges in a monotonous way, i.e., all xi are

positive.

From Example 1.1 and Figure 1 it is clear that GD does not always

converge2, that the convergence depends on x1 and γ, and that theory 2 Even when GD converges the lim-

iting value may not be a local min-
imum. For example, consider an

analogy of case γ < 1/3 of Example

1.1 for function x3: we will get xi → 0,
which is not a local minimum.

and practice are needed for its successful application. Here is a funda-

mental question we will try to partially answer: In what settings does

GD converge and how fast does it converge? To begin with, we will

need to restrict to functions with additional properties.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 2: A few examples of conver-
gence (top) and divergence (bottom)

of GD.

gradient descent and quasi-newton methods 4

2 Properties of functions

Throughout these notes D ⊂ Rn and f : D → R is a continu-

ous differentiable function. In this section we introduce properties of

functions that will allow us to deduce convergence guarantees.

Convex functions

Definition 2.1. A subset D is convex if ∀x, y ∈ D, ∀t ∈ [0, 1] we

have tx + (1− t)y ∈ D, i.e., if ∀x, y ∈ D the whole line segment x
to y is in D.

Figure 3: A convex(left) and a non-

convex set (right).

Definition 2.2. Function f : D → R is convex if D is convex and

∀x, y ∈ D, ∀t ∈ [0, 1] we have

f (tx + (1− t)y) ≤ t f (x) + (1− t) f (y).

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

-2 -1 1 2

-1.0

-0.5

0.5

1.0

Figure 4: A convex(top) and a non-

convex function (bottom).

Convex functions include x2, x2020, ex,− log(x),−
√

x. Non-convex

functions include sin(x), cos(x), x3, log(x).

Given x, y ∈ Rn their dot product will
be denoted by xTy = 〈x, y〉. The norm

of x will be denoted by ||x||.
Relations “above” and “below” in
Proposition 2.3 hold in a non-strict

sense, i.e., below graph Γ means
strictly below or on graph Γ, as
the non-strict inequalities suggest.
A version of Proposition 2.3 in a
strict sense holds for strictly convex

functions defined below.

Proposition 2.3. Let f be a function and let Γ be its graph. The fol-

lowing are equivalent:

1. f is convex.

2. For each x, y ∈ D the line segment from (x, f (x)) to (y, f (y)) lies

above Γ.

3. For each x ∈ D the tangent hyperplane to Γ at x lies below Γ, i.e.,

∀x, y ∈ D:

f (y) ≥ f (x) +∇ f (x)T(y− x).

4. For each x1, x2, . . . , xk ∈ D and α1, α2, . . . , αk ∈ [0, 1] satisfying

∑k
i=1 αi = 1 we have

f
(k

∑
i=1

αixi

)
≤

k

∑
i=1

αi f (xi).

Furthermore, if f is twice continuously differentiable then f is con-

vex iff all eigenvalues of ∇2 f are non-negative (equivalently, if ∇2 f
is positively semidefinite).

Proof. Equivalence 1. ⇔ 2. holds by definition. Equivalence 1. ⇔
4. can be proved using induction. For the other two equivalences see

https://wiki.math.ntnu.no/ media/tma4180/2016v/note2.pdf.

gradient descent and quasi-newton methods 5

Proposition 2.4. If f is a convex function the following hold:

1. For each h ∈ R the sublevel set f−1((−∞, h]) is convex.

2. Each local minimum is a global minimum.

3. The set of global minima of f is a convex set.

(x, f(x))

(y, f(y))

L

f

Figure 5: A sketch of the proof of 2.

of Proposition 2.4.

Proof. 1. follows directly from definition. In order to prove 2. let

x, y ∈ D be two local minima of f with f (x) > f (y). Since the

graph of f lies below the line segment L from (x, f (x)) to (y, f (y)) we

conclude that x can’t be a local minimum, see Figure 5. In order to

prove 3. let x, y ∈ D be two global minima of f . The same argument

as for 2. shows that since f (x) = f (y), the function value along the

line segment L from (x, f (x)) to (y, f (y)) is f (x), hence all points of L
are global minima.

The converse of 1. of Proposition 2.4

does not hold. Think about function√
|x|

Most of our functions will actually be strictly convex, that is

∀x, y ∈ D, ∀t ∈ (0, 1) the following holds:

f (tx + (1− t)y) < t f (x) + (1− t) f (y).

In such a case it is easy to prove f has at most one local3 minimum4. 3 And hence global by Proposition 2.4.
4 This set might be empty, for exam-
ple in the case of ex.

Lipschitz functions

Definition 2.5. Let L > 0. Function f is L-Lipschitz if ∀x, y ∈ D
we have

| f (x)− f (y)| ≤ L||x− y||.

1-Lipschitz functions include sin(x), cos(x), arctan(x), |x|. Func-

tions, which are not L-Lipschitz on their entire domain but are L-

Lipschitz (for some L) on each bounded interval include xn for n > 1
and ex. Logarithmic function fails to be L-Lipschitz even on (0, 1) and√

x fails to be L-Lipschitz even on [0, 1].

Proposition 2.6. Let L > 0.

1. If f is L-Lipschitz, it is continuous.

2. f is L-Lipschitz iff ||∇ f || ≤ L.

sine

x

-x

-6 -4 -2 2 4 6

-5

5

sine

x

-x

-4 -2 2 4 6 8

-5

5

Figure 6: Function f (x) = sin(x) is

1-Lipschitz because for each point
p on the graph Γ of f , Γ is between

the linear functions with slopes ±1
passing through p .

Proof. 1.

lim
xn→x

| f (xn)− f (x)| ≤ L lim
xn→x

||xn − x|| = 0.

gradient descent and quasi-newton methods 6

2. Assume f is L-Lipschitz. For5 h = ∇ f (x)
||∇ f (x)|| we can use directional 5 If ||∇ f (x)|| = 0 the statement holds

trivially.derivative:

||∇ f (x)|| = |hT∇ f (x)| = lim
t↘0

| f (x + th)− f (x)|
t

≤ lim
t↘0

L||th||
t

= L.

Conversely if ||∇ f || ≤ L we define h = y−x
||y−x|| and deduce

| f (x)− f (y)| = |
∫ ||x−y||

0
f ′(x + th)dt| ≤

∫ ||x−y||

0
| f ′(x + th)|dt ≤

≤
∫ ||x−y||

0
Ldt = L||x− y||,

where the derivatives f ′ are with respect to variable t.

Smooth functions

Definition 2.7. Let β > 0. Function f is β-smooth if ∀x, y ∈ D:

||∇ f (x)−∇ f (y)|| ≤ β||x− y||. Essentially, function f is β-smooth iff

∇ f is β-Lipschitz.

β-smooth functions include sin(x), cos(x), arctan(x), |x| and quadratic

functions. Functions, which are not β-smooth on their entire domain

but are β-smooth (for some β) on each bounded interval include xn for

n > 1 and ex. Logarithmic function fails to be β-smooth even on (0, 1)

and
√

x fails to be β-smooth even on [0, 1].

Function x2 is β-smooth but not L-

Lipschitz. Function x3/2 restricted to

[0, 1] is L-Lipschitz but not β-smooth.

x3/2

3 x

2

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

Figure 7: Function f (x) = x3/2 and
its derivative. It is clear that f is
Lipschitz but not β-smooth as f ′ is

not Lipschitz.

Proposition 2.8. Let β > 0. Suppose f is a twice continuously dif-

ferentiable convex function. Then the following are equivalent:

1. f is β-smooth.

2. ||∇2 f || ≤ β.

3. All eigenvalues of ∇2 f lie on [0, β].

Note that ∇2 f depends on x and
so do its eigenvalues and ||∇2 f ||,
meaning that conditions 2. and 3. of

Proposition 2.8 take into account all
x ∈ D.

Proof. Equivalence 1. ⇔ 2. is a multivariate version6 of statement 2.

6 If n = 1 is is actually the same
version.

of Proposition 2.6.

Equivalence 2. ⇔ 3.: Because ∇2 f is symmetric7 its eigenvalues are

7 Hessian is always symmetric.
also its singular values up to the sign. ∇2 f is also positive semidefi-

nite8, meaning all its eigenvalues are non-negative. Since ||∇2 f || is the 8 As f is convex.

largest singular value the equivalence holds.

gradient descent and quasi-newton methods 7

Proposition 2.9 (Lemmas 3.4 and 3.5 in Bubeck). Let β > 0. Sup-

pose f is convex and β-smooth. Then for any x, y ∈ D:

1.

| f (x)− f (y)−∇ f (y)T(x− y)| ≤ β

2
||x− y||2

2.

f (x)− f (y) ≤ ∇ f (x)T(x− y)− 1
2β
||∇ f (x)−∇ f (y)||2.

Proof. 1.

| f (x)− f (y)−∇ f (y)T(x− y)| =

=
∣∣∣ ∫ 1

0
∇ f (y + t(x− y))T(x− y)dt−∇ f (y)T(x− y)

∣∣∣ =

=
∣∣∣ ∫ 1

0
(∇ f (y + t(x− y))T −∇ f (y)T)(x− y)dt

∣∣∣ ≤

≤
∫ 1

0
||(∇ f (y + t(x− y))T −∇ f (y)T)|| · ||x− y||dt ≤

≤
∫ 1

0
βt||x− y|| · ||x− y||dt =

β

2
||x− y||2.

f (x)− f (y) =

=
∫ 1

0
∇ f (y + t(x− y))T(x− y)dt

2. Define z = y− 1
β (∇ f (y)−∇ f (x)).

f (x)− f (y) = (f (x)− f (z)) + (f (z)− f (y)) ≤

= ∇ f (x)T(x− z) +∇ f (y)T(z− y) +
β

2
||z− y||2 =

= ∇ f (x)T(x− y) + (∇ f (x)−∇ f (y))T(y− z) +
1

2β
||∇ f (x)−∇ f (y)||2 =

= ∇ f (x)T(x− y)− 1
2β
||∇ f (x)−∇ f (y)||2.

Let us provide a few hints for the

proof of (2) of Proposition 2.9. By (3)
of Proposition 2.3:

f (x)− f (z) ≤ ∇ f (x)T(x− z).

By (1) of Proposition 2.9:

f (z)− f (y) ≤ ∇ f (y)T(z− y) +
β

2
||z− y||2.

In the last two lines insert the expres-
sion of z for the right instance first,

and then for the left instance.

Strongly convex functions

Definition 2.10. Let α > 0. Function f is α-strongly convex if f (x)−
α
2 ||x||2 is convex. Informally speaking, f is α-strongly convex if it is

more convex than α
2 ||x||2.

Proposition 2.11. Let α > 0.

1. Function f is α-strongly convex iff ∀x, y ∈ D:

f (x)− f (y) ≤ ∇ f (x)T(x− y)− α

2
||x− y||2.

gradient descent and quasi-newton methods 8

2. A twice continuously differentiable function f is α-strongly convex

iff each eigenvalue of ∇2 f is greater or equal to α.

Proof. 1. Using 3.9 of Proposition 2.3 we see that f is α-strongly 9 ∀x, y : f (y) ≥ f (x) +∇ f (x)T(y− x).

convex iff

f (y)− α

2
||y||2 ≥ f (x)− α

2
||x||2 + (∇ f (x)− αx)T(y− x),

which can be rearranged into

−α

2
(||x||2 + ||y||2 − 2xTy) +∇ f (x)T(x− y) ≥ f (x)− f (y)

and noting ||x||2 + ||y||2 − 2xTy = ||x− y||2 we are done.

2. Follows from the last part10 of Proposition 2.3 using the equality 10 If f is twice continuously dif-

ferentiable then f is convex iff all
eigenvalues of ∇2 f are non-negative.

∇2(f (x)− α
2 ||x||2) = ∇2 f (x)− αI.

Summary

We presented four properties of functions that will allow us to prove

theoretical guarantees11: 11 Conditions below can often be

achieved by restricting a function.
Each continuously differentiable

function on a closed bounded domain

is Lipschitz. Each twice continuously
differentiable function on a closed

bounded domain is β-smooth and

α-strongly convex.

• Convex functions12 represent a standard class of functions for which

12 Convex twice differentiable func-

tions are the ones for which ∇2 f is

bounded below by 0.

a nice optimization theory can be developed. They are typically

strongly convex, meaning they have at most one minimum. They

are bounded below by their tangents:

f (x) ≥ f (z) +∇ f (z)T(x− z).

• L-Lipschitz differentiable functions are the ones for which |∇ f | is

bounded above by L: it follows from their definition that for each

z ∈ D function f lies between two functions (see Figure 6):

f (z)− L||x− z|| ≤ f (x) ≤ f (z) + L||x− z||. ⅇx

1 + x + 2 x2

1 + x + 0.1 x2

-1.0 -0.5 0.5 1.0

1

2

3

4

Figure 8: Function ex on the interval
[−1, 1] lies between parabolas with
leading coefficients .1 and 2, which are
tangent to the graph of ex at z = 0.
Since the same bound holds for each

z ∈ [−1, 1] (equivalently, since the
second derivative of ex on [−1, 1] lies

on [.2, 4]) we conclude ex restricted
to [−1, 1] is 4-smooth and .2-strongly
convex.

• β-smooth convex twice differentiable functions are the ones for

which ∇2 f is bounded above by β: it follows from 1. of Proposition

2.9 that for each z ∈ D function f lies below the quadratic func-

tion with the main coefficient β/2, whose value and gradient at z
coincides with f :

f (x) ≤ f (z) +∇ f (z)T(x− z) +
β

2
||z− x||2.

• α-strongly convex twice differentiable functions are the ones for

which ∇2 f is bounded below by α: it follows from 1. of Proposition

2.11 that for each z ∈ D function f lies above the quadratic func-

tion with the main coefficient α/2, whose value and gradient at z
coincides with f :

f (x) ≥ f (z) +∇ f (z)T(x− z) +
α

2
||z− x||2. (1)

gradient descent and quasi-newton methods 9

Observe that for α < β there are many convex β-smooth α-strongly

convex functions with unbounded domain (for example, xt for each

t ∈ [α/2, β/2]). However, an L-Lipschitz α-strongly convex function

necessarily has bounded domain, see Figure 9.

x2

x

-x

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

1.5

Figure 9: The domain of a 1-Lipschitz

1-strongly convex function f with
f (0) = f ′(0) = 0 is an interval

contained in [−1, 1] as its graph has to

be contained in the shaded region.

A simple consequence of Equation (1)13 is that the minimal value of

13 Recall it holds for α-strongly convex

twice differentiable functions.

f is above the minimal value of the corresponding quadratic14, i.e.,

14 The quadratic being Q(x) = f (z) +
∇ f (z)T(x − z) + α

2 ||z − x||2. Using

differentiation it is easy to see its

minimum is attained at x∗ = z −
1
α∇ f (z)

min
x∈D

f (x) ≥ Q(x∗) = f (z)− 1
2α
||∇ f (z)||2.

Why would we be interested on bounds on the second derivative?

Let us consider case n = 1. In step k of GD we are using two values:

f (xk) and f ′(xk), which jointly determine the tangent to f at xk.

However, that does not tell us how large of a step we should make,

i.e., what to choose for γ. From a geometric picture we can see that if

f ′′(xk) is large15, we should be making shorter steps than in the case 15 Meaning the graph of f “curves” a

lot.when f ′′(xk) is small16, see Figure 10. Parameters β and α will be
16 Meaning the graph of f “curves”

just a little bit.
playing a crucial role in determining our optimal step size γ.

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

0.5

1.0

1.5

2.0

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

0.5

1.0

1.5

2.0

Figure 10: Two functions with f (0) =
f ′(0) = 1. Assume we are running a

GD with x1 = 0. The upper function
has a higher second derivative which
means we should be making a smaller

step (smaller γ) that at the bottom
function, whose second derivative is

lower.

3 Guarantees for gradient descent

In this section we present a number of theoretical results17 guaran-

17 The material presented here is
extracted from Chapter 3 of Bubeck’s

book.

teeing convergence of GD. In order to provide a condensed overview

we state most of them in two theorems. In the first one we consider

functions defined on Rn.

For functions f that are not strictly
convex Theorem 3.1 does not imply

xk → x∗.

Theorem 3.1. Assume L, α, β > 0, α < β, f : Rn → R is convex

with global minimum at x∗, x1 ∈ Rn, and sequence xk is obtained

through GD, i.e., xk+1 = xk − γ∇ f (xk) for some γ > 0.

1. If f is L-Lipschitz and γ = ||x1−x∗ ||
L
√

T
for some T ∈N, then

f
(1

T

T

∑
i=1

xi

)
− f (x∗) ≤ L||x1 − x∗||√

T
.

2. If f is β-smooth and γ = β−1, then

f (xk+1)− f (x∗) ≤ 2β||x1 − x∗||2
k

.

3. If f is α-strongly convex and β-smooth, γ = 2
α+β and κ = β

α ,

then

f (xk+1)− f (x∗) ≤ β

2

(κ − 1
κ + 1

)2k
||x1 − x∗||2.

In the second theorem we state versions of results of Theorem 3.1

for functions defined on a closed convex set D ⊂ Rn, i.e., f : D → R.

gradient descent and quasi-newton methods 10

For technical reasons we assume that a global minimum x∗ is attained

in the interior of D. We consider such functions for two reasons: first,

our function may not be defined on the whole Euclidean space18; and 18 Recall, for example, that the do-

main of a Lipschitz strongly convex
function is always bounded.

second, by restricting our function to closed bounded subsets we typ-

ically attain our favourite properties19 even though the original func- 19 Being α-strongly convex, β-smooth,

Lipschitz.tion itself does not posses20 them. However, such restriction presents
20 For example think about ex.an issue: GD may return xk outside our domain. A simple solution

is the projected gradient descent: at each step we project xk. Projec-

tion21 is defined as πD : Rn → D and maps x to its closest point on D. 21 See Lemma 3.2 on the side for some

details. Finding such a projection is a
challenging problem on its own. It is

fairly straightforward though when D
is a closed disc: we just use the radial
projection.

Lemma 3.2. For the projection map

πD : Rn → D to a closed convex

domain D the following hold:

1. πD is well defined, i.e., the closest

point is unique.

2. ∀x ∈ Rn, ∀y ∈ D : ||x − y|| ≥
||πD(x)− y||.

Proof. 1. If x ∈ Rn had two closest
points y, z ∈ D, their midpoint would

lie in D by convexity and would be

even closer to X, a contradiction to
the existence of two closest points.

2. If ||x − y|| < ||πD(x)− y|| then

||x − y|| ≥ ||πD(x) − x|| implies
the longest side A in the triangle

x, y, πD(x) is between πD(x) and y,

see Figure 11. By convexity A ⊆ D
and this A being the longest in the

triangle, it contains a point z ∈ A,

with ||z − x|| < ||x − πD(x)||, a
contradiction with the definition of

πD(x).

x

y πD(x)
z

Figure 11: A sketch of the proof of 2.

of Lemma 3.2.

PROJECTED GRADIENT descent PGD:

xk+1 = πD(xk − γ∇ f (xk))

Theorem 3.3. Assume L, α, β > 0, α < β, f : D → R is a convex

function with a global minimum x∗ contained in the interior of the

closed convex domain D ⊂ Rn, x1 ∈ D, and sequence xk is obtained

through PGD, i.e., xk+1 = πD(xk − γk∇ f (xk)) for some γk > 0.

1. If f is L-Lipschitz and γ = ||x1−x∗ ||
L
√

T
for some T ∈N, then

f
(1

T

T

∑
i=1

xi

)
− f (x∗) ≤ L||x1 − x∗||√

T
.

2. If f is β-smooth and γ = β−1, then

f (xk)− f (x∗) ≤ 3β||x1 − x∗||2 + f (x1)− f (x∗)
k

.

3. If f is α-strongly convex and β-smooth, γ = 1
β and κ = β

α , then

f (xk+1)− f (x∗) ≤ β

2

(κ − 1
κ

)2k
||x1 − x∗||2.

4. If f is α-strongly convex and L-Lipschitz, and γk = 2
α(k+1)

, then

f
(T

∑
i=1

2i
T(T + 1)

xi

)
− f (x∗) ≤ 2L2

α(T + 1)
. The convergence rate for α-strongly

convex L-Lipschitz function seems to

be independent of the starting point.
However, since the diameter of the

domain of such a function is always

bounded by some function D(α, L),
the distance ||x1 − x∗|| is also bounded
by D(α, L).

Note that we have not stated a result for α-strongly convex L-

Lipschitz functions in the context of GD. The reason is, as we have

already mentioned, that such functions always have bounded domain.

gradient descent and quasi-newton methods 11

Proofs

In this subsection we provide proofs of some of the stated results.

The first proof is a model for many other convergence proofs for vari-

ants of GD.

Proof of 1. of Theorem 3.1. The proof has four distinct parts.

I: setting the basic equality. We use an elementary equality ||a −
b||2 = ||a||2 + ||b||2 − 2aTb in

||xi+1 − x∗||2 =||xi − γ∇ f (xi)− x∗||2 =

=||(xi − x∗)− γ∇ f (xi)||2 =

=||xi − x∗||2 + γ2||∇ f (xi)||2 − 2γ(xi − x∗)T∇ f (xi)

to express

(xi − x∗)T∇ f (xi) =
1

2γ
(||xi − x∗||2 − ||xi+1 − x∗||2) +

γ

2
||∇ f (xi)||2.

II: applying properties of f . Since f is L-Lipschitz22 and convex23 22 Meaning ||∇ f || ≤ L.
23 Meaning (xi − x∗)T∇ f (xi) ≥
f (xi)− f (x∗).

we conclude

f (xi)− f (x∗) ≤ 1
2γ

(||xi − x∗||2 − ||xi+1 − x∗||2) +
γL2

2
.

III: Telescoping sum. Adding the obtained inequalities

f (x1)− f (x∗) ≤ 1
2γ

(||x1 − x∗||2 − ||x2 − x∗||2) +
γL2

2

f (x2)− f (x∗) ≤ 1
2γ

(||x2 − x∗||2 − ||x3 − x∗||2) +
γL2

2
...

f (xT)− f (x∗) ≤ 1
2γ

(||xT − x∗||2 − ||xT+1 − x∗||2) +
γL2

2

most of the terms cancel out and we are left with

T

∑
i=1

(f (xi)− f (x∗)) ≤ 1
2γ

(||x1 − x∗||2 − ||xT+1 − x∗||2) +
TγL2

2

≤ 1
2γ
||x1 − x∗||2 +

TγL2

2
setting γ

=

=
√

TL||x1 − x∗||

IV: Finishing touch. We divide the obtained inequality by T and since

f is convex24 We obtain 24 Meaning 1
T ∑T

i=1 f (xi) ≥ f (∑T
i=1

1
T xi).

f
(1

T

T

∑
k=1

xi

)
− f (x∗) ≤ L||x1 − x∗||√

T
.

gradient descent and quasi-newton methods 12

In a similar fashion we can prove several other results, for example

1. of Theorem 3.3, which is a projected version of 1. of Theorem 3.1.

Proof of 1. of Theorem 3.3.

I: setting the basic equality. By 2. Lemma 3.225 we have 25 Meaning ||πD(xi − γ∇ f (xi))− x∗|| ≤
||(xi − γ∇ f (xi))− x∗||.

||xi+1 − x∗||2 =||πD(xi − γ∇ f (xi))− x∗||2 ≤
≤||xi − γ∇ f (xi)− x∗||2 = ...

and then we continue through I-IV as in Proof of 1. of Theorem 3.1.

Proof of 4. of Theorem 3.3.

I: setting the basic equality. This part is the same as in the Proof

of 1. of Theorem 3.3, we deduce

(xi − x∗)T∇ f (xi) =
1

2γi
(||xi − x∗||2 − ||xi+1 − x∗||2) +

γi
2
||∇ f (xi)||2.

II: applying properties of f . We incorporate the facts that f is

α-strongly convex26 and L-Lipschitz we obtain 26 Meaning f (xi) − f (x∗) ≤
− α

2 ||xi − x∗||2 + (xi − x∗)T∇ f (xi).

f (xi)− f (x∗) ≤ (
1

2γi
− α

2
)||xi − x∗||2 − 1

2γi
||xi+1 − x∗||2 +

γiL2

2
,

and as γi = 2
α(i+1)

we conclude27 27 Note that 1
2γi
− α

2 = α(i+1)
4 − 2α

4 =
α(i−1)

4 .

f (xi)− f (x∗) ≤ α(i− 1)

4
||xi − x∗||2 − α(i + 1)

4
||xi+1 − x∗||2 +

L2

α(i + 1)
.

III: Telescoping sum. In order to obtain a form suitable28 for a tele- 28 Meaning where most terms will

cancel out.scopic sum we multiply the obtained inequality by index i to obtain

i f (xi)− i f (x∗) ≤ αi(i− 1)

4
||xi − x∗||2 − αi(i + 1)

4
||xi+1 − x∗||2 +

iL2

α(i + 1)
.

and perform the summation to obtain

T

∑
i=1

(i f (xi)− i f (x∗)) ≤ −αT(T + 1)

4
||xT+1 − x∗||2 +

T

∑
i=1

(iL2

α(i + 1)

)
.

This simplifies29 to 29 As ∑T
i=1 i = T(T+1)

2 , i
i+1 ≤ 1, and

− αT(T+1)
4 ||xT+1 − x∗||2 < 0.T

∑
i=1

i f (xi)−
T(T + 1)

2
f (x∗) ≤ TL2

α
.

IV: Finishing touch. Dividing the inequality by
T(T+1)

2 and using

convexity30 we obtain 30 Note that ∑T
i=1

2i
T(T+1)

= 1.

f
(T

∑
i=1

2i
T(T + 1)

xi

)
− f (x∗) ≤ 2L2

α(T + 1)
.

gradient descent and quasi-newton methods 13

Proof of 3. of Theorem 3.1. The first two parts follow the previous

proofs. I: setting the basic equality: As ∇ f (x∗) = 0 we can express it
Lemma 3.4. In the context of 3. of

Theorem 3.1 the following holds:
∀x, y ∈ Rn, one has

(∇ f (x)−∇ f (y))T(x− y) ≥

αβ||x− y||2
α + β

+
||∇ f (x)−∇ f (y)||2

α + β
.

This lemma is proved in Bubeck’s
book as Lemma 3.11.

as

(xi − x∗)T(∇ f (xi)−∇ f (x∗)) =

=
1

2γ
(||xi − x∗||2 − ||xi+1 − x∗||2) +

γ

2
||∇ f (xi)||2.

II: applying properties of f . By Lemma 3.4 we obtain

αβ||xi − x∗||2
α + β

+
||∇ f (xi)−∇ f (x∗)||2

α + β
≤

≤ 1
2γ

(||xi − x∗||2 − ||xi+1 − x∗||2) +
γ

2
||∇ f (xi)||2.

which we can multiply by 2γ, and use ∇ f (x∗) = 0 again to rearrange

it into

||xi+1 − x∗||2 ≤
(

1− 2αβγ

α + β

)
||xi − x∗||2 −

(−2γ

α + β
+ γ2

)
||∇ f (xi||2).

Since γ = 2
α+β we get31

31 Using 1 − 2αβγ
α+β =

(
κ−1
κ+1

)2
and

−2γ
α+β + γ2 = 0.

||xi+1 − x∗||2 ≤
(κ − 1

κ + 1

)2
||xi − x∗||2

and hence

||xi+1 − x∗||2 ≤
(κ − 1

κ + 1

)2i
||x1 − x∗||2.

The proof is concluded using Proposition 2.9 which states32 32 Here we use the facts that

∇ f (x∗) = 0 and f (x∗) ≤ f (xi+1).

f (xi+1)− f (x∗) ≤ β

2
||xi+1 − x∗||2.

Summary

Table 1 summarizes presented convergence rates33. Recall T is the 33 It contains the reference numbers
of the corresponding theorems in

Bubeck’s book.
number of steps, κ = β

α . Positive number R denotes ||x1 − x∗|| for GD

and the diameter of D for PGD.

How much can we improve these bounds? Later we will present

a number of variants of GD which try to improve these convergence

results, sometimes for a specific class of functions. In the next section

however we will present a lower bound, from which it follows that in a

way some of the bounds obtained above are optimal.

4 Lower bounds for black box procedures

Lower bounds provide an estimate about how well GD or any so

called black box model can perform for a given class of functions. Let

us explain this statement.

gradient descent and quasi-newton methods 14

GD PGD

L-Lipschitz RL√
T

[3.1] RL√
T

[3.1]

β-smooth
2βR2

T−1 [3.3] 3βR2+ f (x1)− f (X∗)
T [3.7]

α-strongly convex, β-smooth
β
2

(
κ−1
κ+1

)2(T−1)
R2 [3.12] β

2

(
κ−1

κ

)2(T−1)
R2 [3.10]

α-strongly convex, L-Lipschitz NA, domain always bounded 2L2

α(T+1)
[3.9]

Table 1: Convergence rates for GD

and PGD with T being the number

of executed steps and R = ||x1 − x∗||.
Added are reference numbers of the

corresponding theorems in Bubeck’s
book.

A black box model assumes an iterative search for a minimum of a

function using information about all past gradients and all past steps.

GD is an example of a black box model. Here is how it works. Given a

function f we choose x1 ∈ D. For the sake of simplicity34 we assume 34 In general a black box model

assumes an iterative search for a
minimum of a function so that each

step is a linear combination of all past

gradients and steps, i.e., xk − xk−1 is
contained in

Span
{
∇ f (x1), . . . ,∇ f (xk−1),

x2 − x1, . . . , xk−1 − xk−2

}
.

If x1 = 0 then all previous steps are
also contained in the span of previous

gradients and this condition simplifies

to (2).

x1 = 0. We then iteratively choose xk so that

xk ∈ Span{∇ f (x1),∇ f (x2), . . . ,∇ f (xk−1)}. (2)

In particular, each our step is a linear combination of gradients in

previous points. Obviously GD is a black box model while PGD is not.

It turns out we can show that a black box model can perform

only35 so well for xk with k < n. Below we present one formal state-

35 This means that even if we can
optimize our choice of parameters γk
in a GD specifically for our function,

we can only do so well. Of course,
when k = n we might generically

expect the past gradients to span Rn

and hence we can get to a solution in
one step.

ments of such an idea36. Here is a simple primer on the idea of the

36 This kind of results are are typi-

cally proved by providing a counterex-
ample. For a few more results of this
sort see Theorems 3.13 and 3.15 in

Bubeck’s book.

proofs. Consider a quadratic function f (x, y) = 3x2 + y2 (for example,

we can look at quadratic on Figure 1). Starting with a point x1 out-

side the main axis, the subspace x1 + t∇ f (x1), t ∈ R will not contain

minimum (0, 0) hence we can’t get to it using a black box procedure in

one step.

Theorem 4.1. Assume n = 2m + 1, β > 0. There exists a β-smooth

strictly convex function f such that for any black box procedure

min
1≤s≤m

(
f (xs)− f (x∗)

)
≥ 3β

32
||x1 − x∗||2
(m + 1)2 .

Proof. We first define a quadratic function f . Start with a tridiagonal

gradient descent and quasi-newton methods 15

matrix

k rows





k columns︷ ︸︸ ︷
2 −1 0 0 · · 0 0
−1 2 −1 0 · · 0 0
0 −1 2 −1 · · 0 0
· · · · · · · ·
· · · · · · · ·
0 0 0 · · −1 2 −1
0 0 0 · · 0 −1 2


= Ak.

Setting An = A and ei to be the standard ith basis vector we define

f (x) =
β

8
xT Ax− β

4
xTe1.

Note37 that ∇ f (x) = β
4 Ax − β

4 e1 and ∇2 f (x) = β
4 A, and since the

Lemma 4.2. Eigenvalues of Ak lie on
(0, 4].

Proof. Let z = (z1, z2, . . . , zk) be an

eigenvector of A with eigenvalue `.
Note that zT Az = `zTz = `||z||2, and

also zT Az = 2 ∑k
i=1 z2

i − 2 ∑k−1
i=1 zizi+1 =

z2
1 + z2

k + ∑k−1
i=1 (zi − zi+1)2 ≥ 0, with

the inequality being strict unless
xi = 0, ∀i. Hence ` ≥ 0.

On the other hand we can use 1-

norm |z|1 = ∑k
i=1 |zi | and the fact

that the sum ob absolute values in

each column (which is the 1-norm of

that column) is at most 4 to deduce
|Az|1 ≤ ∑k

i=1 4|zi | = |4z|1, hence

` ≤ 4.

37 Recall ∂xT Ax
∂x = (A + AT)x.

eigenvalues of A are between 0 and 4 by Lemma 4.2 the second order

conditions imply f is strictly convex and β-smooth.

We next think about subspaces that could contain steps xi in a

black box model.

• x1 = 0.

• ∇ f (x1) = − β
4 e1, so x2 ∈ Span{e1}.

• ∇ f (x2) = β
4 Ax2 − β

4 e1, which is contained in Span{e1, e2} as A is

tridiagonal, and so x3 ∈ Span{e1, e2}.

• We inductively deduce that xi ∈ Span{e1, e2, . . . , ei−1}.

So the question is what is the minimum of fk, which is defined as

the restriction38 of f to Span{e1, e2, . . . , ek}. The minimum x∗k of fk
38 In this case

fk(x) =
β

8
xT Akx− β

4
xTe1.satisfies ∇ f (x∗k) = 0 which39 is a system of linear equations Akx∗k =

39 Recall ∇ fk(x) = β
4 Akx− β

4 e1.

e1, whose solution can be verified to be

x∗k = (1− 1
k + 1

, 1− 2
k + 1

, . . . , 1− k
k + 1

). (3)

By strict convexity the minimum of fk is unique. Thus40 40 Taking into account equalities

1− i
k+1 = k−i+1

k+1 , j = k − i + 1, and

∑k
j=1 j2 = k(k+1)(2k+1)

6 .||x∗k ||
2 =

k

∑
i=1

(k− i + 1
k + 1

)2
=

k

∑
j=1

(j
k + 1

)2
=

k(k + 1)(2k + 1)

6(k + 1)2 <
k + 1

3

and41 41 Using Akx∗k = e1 from above.

fk(x∗k) =
β

8
x∗k

T Akx∗k −
β

4
x∗k

Te1 = − β

8
x∗k

Te1 = − β

8

(
1− 1

k + 1

)
.

We can now conclude42 by 42 Using n + 1 = 2m + 2.

f (x∗s)− f (x∗) ≥ f (x∗m)− f (x∗) =
β

8

(1
m + 1

− 1
n + 1

)
>

β

16(m + 1)
=

3β m+1
3

16(m + 1)2 =
3β 2m+2

3
32(m + 1)2 >

3β||x∗2m+1||2

32(m + 1)2 =
3β||x∗||2

32(m + 1)2 .

gradient descent and quasi-newton methods 16

5 Modifications of gradient descent

In this section we present a number of modifications of GD. We

start by analysing two-dimensional quadratic functions, which will

explain some of our theoretical results.

Quadratics

We start with the one-dimensional case: f (x) = ax2 for a > 0. We

know it’s minimum is at 0. In an analogous way to Example 1.1 it is

easy to see that GD with learning rate γ results in

convergence

divergence

γ = 1
2α γ

|1− 2γα|

1

Figure 12: Convergence of one-

dimensional quadratic: optimal choice

of γ is 1
2α , at which GD converges in

one step. For γ > 1
α GD diverges.

xk+1 = (1− 2γa)kx1,

so the convergence rate will depend on |1− 2γa|.
A bit more challenging is a general quadratic case. Let H be sym-

metric positive definite and define f (x) = 1
2 xT Hx. As ∇ f (x) = Hx we

can deduce

xk+1 = xk − γHxk = (I − γH)xk = (I − γH)kx1.

If we define λ1 ≤ λ2 ≤ . . . ≤ λn as the eigenvalues of H we have43 43 Since H is symmetric positive
definite, its eigenvalues are positive

and coincide with its singular values.
λ1||x|| ≤ ||Hx|| ≤ λn||x||. Define44 α = λ1 and β = λn. By the

44 f is λ1-strongly convex and λ2-
smooth.

triangle inequality45 we deduce

45 Alternatively, we can observe that

1− γH is symmetric with eigenvalues
1− γλ1. . . . , 1− γλn.

||1− γH|| = max{|1− αγ|, |1− βγ|}.

γ

|1− γβ|

1

|1− γα|

Figure 13: Convergence of a

quadratic: optimal choice of γ is
the solution of 1− γα = γβ− 1, which
is at γ = 2

α+β .

We now want to choose the learning rate γ which will minimize

||1− γH|| as this will optimize the convergence rate. From Figure 13

we calculate that this happens at γ = 2
α+β . We make two observa-

tions:

• If at the one-dimensional case the optimal γ was obtained by di-

viding by the second derivative 2α representing the curvature, in

a general case we divide by the average between the largest and

the smallest curvatures, i.e., the average between the largest and

the smallest “directional second derivatives”. This is actually the

learning rate for a α-strongly convex and β-smooth function in 3. of

Theorem 3.1.

• Having chosen γ = 2
α+β , we see that for κ = β

α we have

max{|1− αγ|, |1− βγ|} = 1− α
2

α + β
=

κ − 1
κ + 1

,

which again appears in 3. of Theorem 3.1.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 14: Convergence on a

quadratic: for f (x, y) = x2 + 5y2

and γ = 1
10 we obtain the follow-

ing sequence. The behaviour can be

explained using the discussed conver-

gence analysis as |1− γβ| = 0.

So as far as GD with a constant learning rate γ is concerned, 3. of

Theorem 3.1 provides optimal bounds. However, improved convergence

may be obtained by Polyak version of GD.

gradient descent and quasi-newton methods 17

Polyak (also called momentum or heavy ball) GD

Polyak’s method from 1966 introduces a momentum term in the

form of µ(xk − xk−1).

POLYAK GD:

xk+1 = xk − γ∇ f (xk) + µ(xk − xk−1)

This modification46 makes xk+1 dependent on ∇(xk) and on the 46 By default we assume that in the

first step, when computing x2, we only
perform the standard GD as there is

no previous step yet. Equivalently, we

can define x0 = x1 and proceed with
the Polyak iteration throughout all

indices.

previous step xk − xk−1. The momentum term represents a momentum

a heavy ball would be carrying into next steps while rolling down

along the graph of f .

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0 Figure 15: Optimal convergence via

GD (left, γ = 1/6) and via Polyak GD

(right, γ ≈ .19, µ ≈ .15) for function
x2 + 5y2, whose minimal value is 0.

The value at x6 of GD is .04 while

Polyak gives 0.004, which is much
closer to 0, even though x2 of Polyak

is clearly worse.

Using Figure 15 we can get some intuition about why Polyak GD

works well. Going back to the analysis of quadratic functions note that

we choose γ = 2
α+β so that max{|1− αγ|, |1− βγ|} is minimal, which

means 1− αγ > 0 and 1− βγ < 0. Now 1− αγ > 0 implies that

the corresponding coordinate47 decreases monotonously48, which we 47 On Figure 15 that is the x-
coordinate as α = 2 corresponds

to it.
48 See Example 1.1 for the same
phenomenon.

can observe on Figure 15. Inequality 1− βγ < 0 however implies that

the corresponding coordinate49 is alternating 50 The momentum term

49 On Figure 15 that is the y-

coordinate as β = 10 corresponds
to it.
50 Again, see Example 1.1 for the

same phenomenon.

consequently absorbs some of this alternation and turns it into faster

convergence.

We proceed by convergence analysis for Polyak GD for quadratic

function. Let H be symmetric positive definite with eigenvalues on

[α, β] and define f (x) = 1
2 xT Hx with the obvious minimal value 0 at

(0, 0, . . . , 0). We encode the iterative step in the following way:

[
xk+1

xk

]
=

A︷ ︸︸ ︷[
I − γH + µI −µI

I 0

] [
xk

xk−1

]

Just like in the case of GD for quadratics we want to estimate

||Ak|| because ||xk+1|| ≤ ||Ak|| · ||x1||. Unfortunately, as A is not

symmetric ||A|| may not coincide with λ, which is defined51 as the 51 Let us also define α as the minimal
eigenvalue of H and β as the maximal

eigenvalue of H.

gradient descent and quasi-newton methods 18

maximal absolute value of an eigenvalue of A. However, by Lemma 5.1

it suffices to estimate ||Ak|| asymptotically. So let’s start looking for

λ.
Lemma 5.1. [A matrix analysis

lemma] There exist εk → 0 such
that ||Ak || ≤ (λ + εk)k.Since H is diagonalizable in an orthonormal basis, we can use the

same basis to transform A into a block diagonal matrix A′ consisting

of blocks

Ai =

[
1− γλi + µ −µ

1 0

]
,

with λi being the ith eigenvalue of H. This means that the eigenvalues

of A coincide with the list of eigenvalues of all Ai and in particular,

λ is the largest absolute value of an eigenvalue of Ai. So let’s find

the eigenvalues of Ai and keep in mind that we want52 their absolute 52 Meaning we want to make the
appropriate choice of γ and µ.value to be as small as possible53 in order to get the best possible
53 ...and in any case smaller than 1...

convergence.

First note that |Ai| = µ meaning54 that in the optimal case both 54 Since the determinant equals the

product of the eigenvalues.eigenvalues will be of absolute value
√

µ. This happens if the eigen-

values are either both the same (
√

µ or −√µ) or complex conjugates

of each other. These two conditions are equivalent to the discriminant

D of the characteristic polynomial of Ai being non-positive55. So let’s 55 If D > 0 then one of the eigenvalues
would be larger that

√
µ, which is a

less favourable situation.
find conditions on µ and γ that imply D ≤ 0.

From Ai we conclude that D = (1− γλi + µ)2 − 4µ. Taking into

account56 γ ∈ [0, 1] we can compute that D ≤ 0 iff57 |1−
√

γλi| ≤ 56 We can later check that our choice
of γ satisfies this condition.
57 D ≤ 0 is equivalent to a system of

two inequalities:

−2
√

µ ≤ 1− γλi + µ ≤ 2
√

µ.

The left one is equivalent to

γλi ≤ 1 + 2
√

µ + µ = (1 +
√

µ)2

and expressing
√

µ we get
√

γλi − 1 ≤√
µ. The right one similarly reduces

to 1−
√

γλi ≤
√

µ. Jointly we get

|1−
√

γλi | ≤
√

µ.

√
µ. This condition has to hold for all i so we must choose µ and γ so

that

√
µ ≥ max

i
{|1−

√
γλi|} = max{|1−√γα|, |1−

√
γβ|}.

Similarly as in the case of quadratics we can use Figure 16 to see

that as a function of γ the expression max{|1−√γα|, |1−
√

γβ|} is

smallest at γ = 4
(
√

α+
√

β)2 and
√

µ =

√
β−
√

α√
β+
√

α
=
√

κ−1√
κ+1 < 1. We thus

proved a theorem, which implies that Polyak GD performs better than

GD for quadratics.

γ

|1−
√
γβ|

1

|1−√γα|

Figure 16: The optimal choice of γ is
the solution of 1−√γα =

√
γβ− 1,

which is at γ = 4
(
√

α+
√

β)2 .

Theorem 5.2. For a quadratic function the Polyak GD with param-

eters
√

µ =

√
β−
√

α√
β +
√

α
, γ =

4
(
√

α +
√

β)2

satisfies

||xk+1 − x∗|| ≤
(√β−

√
α√

β +
√

α
+ εk

)k
||x1 − x∗||

For the conclusion we discuss some properties of Polyak GD:

gradient descent and quasi-newton methods 19

• Theorem 3.15 in Bubeck’s book, which is another lower bound re-

sult for a black box method58, implies that asymptotically speaking 58 It is easy to see that Polyak GD is

a black box method.this convergence is as good as it can possibly be.

• We next mention a curiosity about Polyak GD. In the theorem

above we picked specific optimal values for parameters µ and γ.

Now assume we chose
√

µ ∈
(√

β−
√

α√
β+
√

α
, 1
)

. In this case, judging

by Figure 17, we have more flexibility for the choice of γ, it can be

anywhere along the bold line. The argument above still works, the

determinants of Ai are still µ and hence

||xk+1 − x∗|| ≤
(√

µ + εk

)k
||x1 − x∗||.

Surprisingly, the convergence rate depends only on µ and not on γ.

This means that the choice of the momentum coefficient µ has more

influence to the convergence than the gradient coefficient γ.

γ

|1−
√
γβ|

1

|1−√γα|
√
µ

Figure 17: For µ < 1 above the opti-

mal value we can choose γ anywhere
along the bold line and still satisfy√

µ ≥ max{|1−√γα|, |1−
√

γβ|}.

• Polyak GD has guaranteed great performance on quadratics and

is also frequently used for general functions with good results.

However, it turns out there are fairly simple examples of functions

where it does not converge. For example, let f : R → R be defined

by

f ′(x) =


25x x < 1

x + 24 1 ≤ x ≤ 2

25x− 24 2 < x

This means f is 25-smooth, 1-strongly convex59 and consists of 59 With both these paramaters being

optimal.three parabolic segments. If we choose optimal parameters µ = 4
9

and γ = 1
9 the following turns out to be true:

– There exist points w1 ≈ .65, w2 ≈ −1.8, w3 ≈ 2.12 ∈ R so

that if x1 = w1 and x2 = w2, then x3 = w3, x4 = w1, x5 =

w2, . . ., meaning that starting with such prescribed x1 and x2,

the Polyak GD does not converge but loops indefinitely through

values w1, w2, w3.

– The previous case is a bit artificial since in practice we typically

define60 x1 = x2. However, it can be proved that even if we start 60 A fun fact about polyak GD:

assume x1 = x2 6= x∗. Then even
if xk = x∗ for some k, we still have

xk+1 6= x∗ as the momentum term
perturbs the next step.

with x1 = x2 ≈ 3.3, the terms xi will start approaching the cyclic

orbit w1, w2, w3. In particular, xi does not converge.

Nesterov GD

Nesterov GD is a slight modification of Polyak GD. While Polyak

GD makes the gradient step first and then adds the momentum, Nes-

terov GD can be thought of as adding the momentum first and then

making the gradient step from the new point.

gradient descent and quasi-newton methods 20

NESTEROV GD:

xk+1 = xk − γ∇ f
(
xk + µ(xk − xk−1)

)
+ µ(xk − xk−1)

Theorem 5.3 (Theorem 3.18 in Bubeck’s book). If f is α-strongly con-

vex and β-smooth, γ = 1
β , µ =

√
κ−1√
k+1

and κ = β
α , then

f (xk+1)− f (x∗) ≤ α + β

2

(√κ − 1√
κ

)k
||x1 − x∗||2.

Theorem 5.4 (Theorem 3.19 in Bubeck’s book). If f is convex and

β-smooth, and γ = 1
β , then for an appropriate choice of µi we have

f (xk)− f (x∗) ≤ 2β

k2 ||x1 − x∗||2.

Nesterov GD provably works for more general functions than

Polyak GD although the convergence for quadratics is slightly worse

than that of Polyak GD61. 61 For a detailed comparison see L.

Lessard, B. Recht, A. Packard: Anal-
ysis and Design of Optimization

Algorithms via Integral Quadratic

Constraints, arXiv:1408.3595, espe-
cially the comparison table appearing

on page 6.

Stochastic GD

Stochastic GD (SGD) becomes useful when our function f is a sum

of a large number of functions62, i.e., when f = 1
N ∑N

i=1 fi and N is
62 Imagine fitting a linear function
(i.e., linear regression) to N points

on the plane via the least squares

method. The error function that
should be minimized to obtain such

a linear function is the sum of all

squares of errors, i.e., it consists of N
summands.

large.

Following the GD, each step would require us to:

1. Compute N gradients ∇ fi and add them up.

2. Evaluate at the current point and make the step.

In order to ease on the number of gradient computations we may do

the following:

1. Compute the gradient ∇ f j for some random j.

2. Evaluate at the current point and make the step.

This way we reduced the number of gradient computations but

typically also reduced the quality of our step. In particular, as soon as

we computed one gradient we used it to make a step, without waiting

for the other gradients to be computed. This is the idea of SGD.

gradient descent and quasi-newton methods 21

SGD:

∀k choose j(k) ∈ {1, 2, . . . , N} randomly uniformly

xk+1 = xk − γ∇ f j(k)(xk)

Theoretical guarantees on convergence can be deduced from the

results for GD because E[∇ f j(k)] = ∇ f . For example, under the

conditions of 1. of Theorem 3.1 we can conclude that SGD results in

E
[

f
(1

T

T

∑
i=1

xi

)]
− f (x∗) ≤ L||x1 − x∗||√

T
.

A downside of SGD is that after a while63 the steps tend to bounce 63 After most variables are well tuned.

around the optimum64. To avoid it we typically use decaying step 64 This is called the noise ball effect

size γi. Another option that tackles this issue to a point is to use the

minibatch65 SGD. The idea is that instead of using just one gradient 65 In this setting the classical GD is
sometimes referred to as batch GD.∇ fi in each step, we use T such gradients with T << N. This is

a variant between GD and SGD and which sometimes offers a good

balance between the two.

MINIBATCH SGD:

∀k choose j(k, 1), . . . , j(k, T) ∈ {1, . . . , N} randomly uniformly

xk+1 = xk − γ 1
T ∑T

i=1∇ f j(k,i)(xk)

AdaGrad GD

Recall the standard GD:

xk+1 = xk − γ∇ f (xk).

In the effort to improve GD, we can add a preconditioner66 matrix A 66 Another way of thinking about it
is that we replace parameter γ by a

matrix γA. As will be explained in
the next section, the optimal precon-
ditioner is the inverse of the Hessian
matrix. In this section however we
are considering first order methods

and therefore we will focus on pre-

conditioners derived from gradients.
AdaGrad fits into the description of

quasi-Newton methods, which will be
introduced in the following section.

to obtain:

xk+1 = xk − γA∇ f (xk).

This modification will change the direction of our step67. However,

67 Meaning that we may not get a

black box method anymore

we get added flexibility. While scalar γ can be used to weight the

length of iterative steps, γA can be used to weight each coordinate of

the gradient independently. In particular, if A is diagonal, then its ith

diagonal entry will be a weight on the ith coordinate of the gradient

step. In this subsection let x(i) denote the ith component of a vector x.

AdaGrad (Adaptive GD) adapts to changes in each component

of the gradient descent independently. For each i, k define d̃i,k =

∑k
j=1

(
(∇ f xj)

(i)
)2

to be the sum of the squares of the ith components

of all the gradients up to step k and define68 a diagonal matrix 68 In order to avoid division by 0, a
small positive value is often added to
each diagonal element of D1.

gradient descent and quasi-newton methods 22

Dk = Diag[(d̃1,k)−1/2, (d̃2,k)−1/2, . . . , (d̃n,k)−1/2].

AdaGrad:

xk+1 = xk − γDk · ∇ f (xk)

In particular, the ith component of the kth gradient step gets divided

by
√

d̃i,k, with d̃i,k being the cumulative sum of the squares of all ith

components of past gradients and hence contains the process history.

• Multiplication by D is accelerating the process in those components,

whose gradient component is typically small69. On the other hand 69 In terms of the absolute value, of

course.it is dampening the process in those directions that typically have

large gradient component.

• Consequently AdaGrad promotes less visible features, and dampens

updates in coordinates that oscillate a lot.

• AdaGrad performs well for sparse data.

• The problem is that the accumulating weights d̃i,k are an increasing

function and eventually dampen the whole process. Thus while

AdaGrad may perform well initially, it may get eventually stuck.

The shortcomings of AdaGrad are addressed by a number of other

methods: RMSProp (which changes the definition of d̃i,k by putting

more emphasis on the resent history instead of the uniformly treat-

ment by AdaGrad), Adam70 (it employs a variant of the modification 70 It is actually a generalization

of both the Polyak method and
AdaGrad.

of RMSProp but also changes the gradient term by incorporating past

gradients and momenta), etc.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0
Figure 18: A comparison of GD (red)

and AdaGrad (dashed white) on the
left, and of GD (red) and RMSProp

(dashed white) on the right. We see

that the initial two points (i.e., the
initial point and the initial step) are

the same in all cases. Afterwards the
weights on AdaGrad and RMSProp
start having effect by dampening the

oscillation in the x direction, which is

still present in GD, and by promoting
the small but consistent changes in

the y direction.

gradient descent and quasi-newton methods 23

Summary

We summarize the variants of GD presented in this section71: 71 We assume the functions concerned

are always convex and often have

additional properties.1. Polyak GD:

+ Works provably great for quadratics.

+ In practice often works well in general.

- May not converge in general.

2. Nesterov GD:

+ Provably works well in general.

+ Still works well for quadratics, although slightly slower than

Polyak.

3. SGD:

+ Accelerates convergence for functions of the form f = ∑N
i=1 fi

when N is large.

+ Each iterative step is much cheaper than at GD.

- More steps are needed.

- Eventual variance may make our steps bounce around.

4. Minibatch SGD:

+ Accelerates convergence for functions of the form f = ∑N
i=1 fi

when N is large, although less than SGD.

+ Each iterative step is cheaper than at GD.

- More steps are needed, although less than with SGD.

- Eventual variance may make our steps bounce around, although

less than SGD.

5. AdaGrad GD:

+ Initially works great.

- May eventually get stuck due to accumulating weights.

6 Newton and quasi-Newton methods

Newton method72 is second order method, which means we will be 72 Sometimes we will refer to Newton
methods to encompass the classical

Newton method and its various

variants.

making inductive guessing73 based on the second derivative as well

73 I.e., the iterative construction of xk.

as the first derivative. Subsequently derived quasi-Newton methods

are essentially first-order methods, with the underlying idea being

that of approximation74 of the Hessian by gradients. Newton and 74 The reason being that for practical

purposes the Hessian, being an n× n
matrix, is often too expensive to
compute and store.

quasi-Newton methods outperform GD close to x∗, work better with

gradient descent and quasi-newton methods 24

complicated functions and are generally used on data of smaller size

and for complex statistical models. On the other hand, the Newton

methods may behave inconveniently for initial conditions far from x∗

and typically have expensive iteration steps. When dealing with big

amounts of data GD is thus preferable.

Newton methods

Given a point xk the GD uses ∇ f (xk) to approximate f by a linear

function and extract the direction of the greatest descent. The Newton

method on the other hand uses ∇ f (xk) and ∇2 f (xk) to approximate f
by a quadratic function. Since every quadratic has a unique minimum

(as long as its Hessian is positive definite), it is naturally to take that

minimum as the next iterative step75. We start with a motivating 75 Although some variants use only

the direction towards that minimum
and deduce the length of the step via

other means, as we will see later.

example.

Example 6.1. Define

f (x) = bTx +
1
2

xT Hx,

where H is a symmetric positive definite matrix76, and compute 76 Without positive semi-definiteness f
would have no minimum.

∇ f (x) = Hx + b, ∇2 f (x) = H.

The minimum x∗ of f satisfies ∇ f (x∗) = 0, hence x∗ = −H−1b.

We now use the insight gained by Example 6.1 to derive the classi-

cal Newton method. It is easy to verify77 that the quadratic function 77 One could use the Taylor ex-

pansion to obtain Q or prove
by a direct calculation that

Q(xk) = f (xk),∇Q(xk) = ∇ f (xk)
and ∇2Q(xk) = ∇2 f (xk).

that fits f best at xk is

Q(xk + t) = f (xk) + tT ∇ f (xk) +
1
2

tT ∇2 f (xk) t.

Note that ∇Q = ∇ f (xk) +∇2 f (xk)t and so similarly as in Example

6.1, the minimum is attained78 at 78 For this argument we assume
∇2 f (xk) is invertible. Keep in mind

that ∇2 f (xk) is a symmetric matrix
and ∇ f (xk) is a vector.

t = −(∇2 f (xk))−1 ∇ f (xk),

which results in the next best guess xk+1 for x∗:

THE NEWTON METHOD:

xk+1 = xk − (∇2 f (xk))−1 ∇ f (xk)

The following convergence results shows that the Newton method

converges nicely in a neighborhood of x∗.

gradient descent and quasi-newton methods 25

Theorem 6.2 (Theorem 3.5 in Nocedal’s book). Suppose f is twice

continuously differentiable, ∇2 f is L-Lipschitz continuous and pos-

itive definite in a neighborhood of x∗. Let xk be a sequence of iterates

constructed via the Newton method. Then there exists L̃ > 0 so that

if x1 is close enough to x∗,

||xk+1 − x∗|| ≤ L̃ ||xk − x∗||2,

i.e., the convergence is quadratic if x1 is close enough to x∗.

Conclusion of Theorem 6.2

||xk+1 − x∗|| ≤ L̃ ||xk − x∗||2

is referred to as Q-quadratic conver-

gence in Nocedal’s book. It implies

||xk+1− x∗|| ≤ L̃20+2+...+2k−1 ||x1− x∗||2k
,

||xk+1 − x∗|| ≤ L̃2k−1 ||x1 − x∗||2k
.

If L̃ > 1 this means

||xk+1 − x∗|| ≤ (L̃ ||x1 − x∗||)2k

while for L̃ ≤ 1 we get

||xk+1 − x∗|| ≤ ||x1 − x∗||2k
.

Both of these conditions imply fast

convergence if x1 is close enough to

x∗.

Proof.

xk+1 − x∗ = xk − (∇2 f (xk))−1 ∇ f (xk)− x∗
∇ f (x∗)=0

=

= (∇2 f (xk))−1
(
∇2 f (xk)(xk − x∗)− (∇ f (xk)−∇ f (x∗))

)
Using this equality we can express79 79 For the first part of the constructed

integral note
∫ 1

0 ∇
2 f (xk)(xk − x∗)dt =

∇2 f (xk)(xk − x∗). As for the second

part,

∂∇ f (x∗ + t(xk − x∗))
∂t

=

=
(
∇2 f (x∗ + t(xk − x∗))

)
(xk − x∗)

implies∫ 1

0

(
∇2 f (x∗+ t(xk− x∗))

)
(xk− x∗)dt =

= ∇ f (x∗ + t(xk − x∗)) |10=

= ∇ f (xk)−∇ f (x∗).

||xk+1 − x∗|| =

= ||(∇2 f (xk))−1
∫ 1

0

(
∇2 f (xk)−∇2 f (x∗ + t(xk − x∗))

)
(xk − x∗)dt|| ≤

≤ ||(∇2 f (xk))−1||
∫ 1

0
||∇2 f (xk)−∇2 f (x∗ + t(xk − x∗))|| · ||xk − x∗||dt.

As ∇2 f is L-Lipschitz80 we further deduce

80 I.e.,

||∇2 f (xk)−∇2 f (x∗ + t(xk − x∗))|| ≤

≤ L|(xk − x∗ − t(xk − x∗))| =
= L(1− t)||xk − x∗||.

||xk+1 − x∗|| =

≤ ||(∇2 f (xk))−1||
∫ 1

0
L(1− t)||xk − x∗|| · ||xk − x∗||dt =

= ||(∇2 f (xk))−1|| · L
2
· ||xk − x∗||2.

We can now choose a radius r so that if ||x − x∗|| < r we have

||(∇2 f (x))−1||−1 < 2||(∇2 f (x∗))||−1. Setting L̃ = L||(∇2 f (x∗))||−1

we obtain

||xk+1 − x∗|| ≤ L̃ · ||xk − x∗||2. (4)

Choosing x1 so that ||x1 − x∗|| ≤ min{r, 1
2L̃
} we iteratively deduce81 81 Condition ||xi − x∗|| ≤ r is required

to deduce Equation 4. Together with

condition ||xi − x∗|| ≤ 1
2L̃

it implies

||xi+1 − x∗|| ≤ min{r, 1
2L̃
}.

||xk − x∗|| ≤ min{r, 1
2L̃
} and thus Equation 4 holds for all k.

While the Newton method often performs well, there are cases

where it fails. The most obvious source of problems is the case when

the Hessian is not positively definite (Example 6.4), although even

the Hessian being positively definite does not guarantee convergence

(Example 6.3).
-0.5 0.5

-0.2

0.2

0.4

Figure 19: Graph of f (x) = x2 − 1
4 x4

in green and two fitted parabolas at
±
√

2/5 as set in Example 6.3. The
Newton method results in a divergent
sequence for x1 =

√
2/5.

Example 6.3. Let f (x) = x2 − 1
4 x4. By setting x1 =

√
2/5 the Newton

method produces sequence xodd =
√

2/5, xeven = −
√

2/5, hence there is

no convergence, even though f ′′ > 0 on [−
√

2/5,
√

2/5], see Figure 19.

gradient descent and quasi-newton methods 26

Example 6.4. Let f (x, y) = x4 + 4xy + (1 + y)2, see Figure 20.

Choosing x1 = (0, 0) we can compute ∇ f (x1) = (0, 2)T and

∇2 f (x1) =

(
0 4
4 2

)
.

By the Newton method we would get x2 = (0, 0) − (.5, 0) = (−.5, 0)

with the step being −(.5, 0). Note that this is perpendicular to ∇ f (x1)

hence it is not a descent direction82 In fact it can be proved that 82 Meaning the corresponding direc-
tional derivative is not negative.nowhere along the line of the Newton step does the function decrease,

and function value at (−.5, 0) is larger than at (0, 0).

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Figure 20: Contour plot of f (x, y) =
x4 + 4xy + (1 + y)2 set in Example 6.4.

The Newton method starting at (0, 0)
does not decrease the function value
in the first step.

While Example 6.4 demonstrates that a single step of a Newton

method may result in a less favourable x2, we could construct a func-

tion so that the same would happen in each step and the Newton

iteration would not only diverge, but actually increase the value of the

function.

We next provide several modifications aimed at overcoming some of

the mentioned issues.

Adaptations to the Newton method

Lemma 6.5. If ∇2 f (x) is positive

definite then −(∇2 f (x))−1∇ f (x) is a
descent direction.

Proof. A direction v at x is a descent

direction iff the directional deriva-
tive at x along v is negative, i.e., iff

(∇ f (x))Tv < 0. In our case this holds

as

−(∇ f (x))T (∇2 f (x))−1 ∇ f (x) < 0.

We used the fact that as ∇2 f (x) is

positive definite, so is its inverse.

1. The line search. Instead of using the default step of the Newton

method, we could adjust it to any suitable length by adjusting the

parameter α:

xk+1 = xk − α(∇2 f (xk))−1 ∇ f (xk), α ∈ R.

This won’t solve the issue in Example 6.4, as no choice of α would

decrease the function value. However, this approach would adjust

the step in Example 6.3 and make it converge. By Lemma 6.5, the

direction −(∇2 f (x))−1∇ f (x) is a descent direction if ∇2 f (x) is

positive definite, hence some positive α = αk works in each step and

allows us to avoid the pitfall of Example 6.3.

The main challenge in this case is the choice of α. Typically we

would start with α = 1, which is the natural choice and the de-

fault of the Newton method. We would then verify the Wolfe83 83 A line search is typically performed

by verifying the Wolfe (or sometimes
Armijo) conditions for a chosen α and

then adjusting α if necessary. The

Wolfe conditions do not guarantee
that we found a minimum along the

line of search, but provide a close

enough approximation.

conditions and if necessary, iteratively decreasing α until the Wolfe

conditions are satisfied.

2. A modification of the Hessian. The second modification deals with

non-positive definite Hessians, an issue which may cause serious

issues84 even if we employ the line search. We present two possi- 84 As demonstrated by Example 6.4.

ble workarounds to change ∇2 f (xk) into a closely related positive

definite matrix:

gradient descent and quasi-newton methods 27

(a) Diagonalize ∇2 f (xk), change the sign of all negative eigenvalues

and use this modified version of the Hessian in the construc-

tion of xk+1. Diagonalization is of course costly and there is in

general no guarantee that this solves the issue.

(b) Change ∇2 f (xk) to ∇2 f (xk) + λI for some λ > 0. While the

approach in (a) changes the sign of the negative eigenvalues

of ∇2 f (xk), this approach shifts them all by λ. Of course, the

smaller λ we choose, the smaller the change will be, which is

preferrable. As we want the result to be positive definite, λ

should be larger than

−max{0, minimal eigenvalue of ∇2 f (xk)}.

In practice we would typically test whether ∇2 f (xk) + λI is

positive definite for some λ and then adjust the parameter if

deemed necessary85. How do we test whether a matrix is positive 85 If the resulting matrix is not pos-
itive definite we need to increase λ
and test again. If the resulting matrix

is positive definite we could stick to
the current λ or decrease it and test

again.

definite? We try to perform the Choleski factorization: a matrix

is positive definite iff the Choleski factorization algorithm returns

a decomposition.

This modification is preferable to (a). There is also a good rea-

son to expect it to work. Notice that the λI term alone repre-

sents the gradient descent with step λ. Hence ∇2 f (xk) + λI is

a weighted combination of a gradient descent and the Newton

method. Since the gradient descent always proceeds along the

steepest descent direction, this modification actually adjusts the

Newton step towards the steepest descent.

Implementations of a Newton method typically incorporate these

two modifications. All of the quasi-Newton methods below are to be

used at least with the line search modification.

Quasi-Newton methods

Computing, storing and inverting Hessians86 requires a lot of re- 86 Note that Hessians are typically not
sparse.sources. Quasi-Newton methods aim to approximate the inverse of a

Hessian by a matrix Bk, which typically depends only87 on gradients. 87 This means that quasi-Newton

methods are actually first order
methods trying to imitate second

order methods.

AdaGrad presented in the previous section fits into the framework of

quasi-Newton methods.

QUASI-NEWTON METHODS:

xk+1 = xk − Bk ∇ f (xk)

Obviously the difference between various quasi-Newton methods

is in construction of Bk. We will present two more methods of con-

structing Bk. Before we do so we discuss the QN-condition88 that the 88 I.e., quasi-Newton condition.

gradient descent and quasi-newton methods 28

quasi-Newton methods typically satisfy.

Recall that the Newton method is based on an approximation of a

function f at xk by a quadratic89 Q so that: 89 An obvious condition is Q(xk) =
f (xk).

• ∇Q(xk) = ∇ f (xk) and

• ∇2Q(xk) = ∇2 f (xk).

Most of the quasi-Newton methods are based on an approximation of

a function f at xk by a quadratic Q so that90: 90 They use only gradients.

1. ∇Q(xk) = ∇ f (xk) and

2. ∇Q(xk−1) = ∇ f (xk−1).

Let us analize these two conditions. Quadratic Q is of the form91 91 Here Dk is a symmetric positive-
definite matrix to be defined, that

represents an approximation of the

Hessian of xk.
Q(xk + t) = f (xk) + tT∇ f (xk) +

1
2

tT Dkt.

Condition 2. above translates92 to 92 Note that ∇Q(xk + t) = ∇ f (xk) +
Dkt.

∇ f (xk−1) = ∇ f (xk) + Dk(xk−1 − xk).

Introducing notation γk = ∇ f (xk)−∇ f (xk−1), δk = xk − xk−1, and

Bk = D−1
k we obtain the QN condition:

Bkγk = δk.

QN condition is the basis of the following two methods:

1. SR1: rank 1 update. The idea of SR1 is to update Bk in each step

by a rank 1 matrix while preserving its properties of being positive

definite and symmetric. Technically this means93 there exist uk ∈ 93 Typically the initial matrix B1 is
a positive multiple of the identity

matrix.
Rn so that

Bk+1 = Bk + ukuT
k .

Coupling94 this equality with the QN condition we obtain 94 I.e., multiplying from right by γk+1.

Bkγk+1 + ukuT
k γk+1 = δk+1. (5)

As ukuT
k γk+1 is parallel to uk we deduce

uk = pk+1(δk+1 − Bkγk+1)

for some pk+1 ∈ R. Inserting the last equality into Equation (5)

results95 in p2
k+1 = (γT

k+1(δk+1 − Bkγk+1))−1. 95 Of course, assuming that

γT
k+1(δk+1 − Bkγk+1) 6= 0.

Theorem 6.6. If f is a strongly convex

quadratic with Hessian A, x1 ∈
Rn, B1 is any symmetric positive
definite matrix, and γT

k+1(δk+1 −
Bkγk+1) 6= 0, then SR1 converges in
at most n steps. Furthermore, if the

first n search directions are linearly

independent, then Bn+1 = A−1.

SR1: For δk+1 = δ, γk+1 = γ

Bk+1 = Bk + (δ−Bkγ)(δ−Bkγ)T

γT(δ−Bkγ)

gradient descent and quasi-newton methods 29

Our deduction above implies that this is the only rank 1 update

with the stated properties96. It turns out to be fairly stable and
96 I.e., preserving properties of Bk of
being positive definite and symmetric,

and satisfying QN conditions.

provides good approximations of the inverse of the Hessian by The-

orem 6.6. However, its performance is typically superseded by the

rank 2 update below.

2. BFGS: a rank 2 update. BFGS is perhaps the most popular quasi-

Newton method due to its excellent performance. It is one of the

rank 2 update methods satisfying the QN condition. It could be

deduced in a similar although more technical way as SR1.

BFGS:

Bk+1 = Bk − δγT Bk+BkγδT

δTγ
+
(

1 + γT Bkγ
δTγ

)
δδT

δTγ

Both SR1 and BFGS provably converge under favourable curcum-

stances97. 97 For details see Section 6.4 in No-

cedal’s book.

Limited memory quasi-Newton methods

Limited memory versions of quasi-Newton methods tackle the prob-

lem of storing large typically non-sparse matrices Bk. Here we will

present a limited version of the BFGS method called L-BFGS, which

sacrifices some performance but significantly reduces the memory us-

age. Before we go into details let us rephrase BFGS in an inductive

matter.

Define ρk = (δT
k γk)−1 ∈ R and n× n matrices Vk = I − ρkγkδT

k . We

can thus express the BFGS inductive step as

Bk = VT
k Bk−1Vk + ρkδkδT

k .

After m iterations98 we obtain 98 For the sake of simplicity let’s

assume k > m.
Bk = (VT

k . . . VT
k−m+1) Bk−m (Vk−m+1 . . . Vk)+

+ρk−m+1 (VT
k . . . VT

k−m+2) δk−m+1δT
k−m+1 (Vk−m+2 . . . Vk)+

...

+ρk−1VT
k δk−1δT

k−1Vk+

+ρkδkδT
k

(6)

L-BFGS incorporates three modifications with respect to BFGS:

1. While a matrix of BFGS stores the entire history up to that point,

matrix Bk of L-BFGS contains only the history of the last99 m 99 Values of m are usually chosen
between 3 and 20.steps. Matrix Bk can be expressed using Equality (6), substituting

the (at this point unsaved) Bk−m for an appropriate initialisation100 100 Matrices B̃k should be diagonal,

else they undo the performance
improvements below. Typically

B̃k =
δT

k γk

γT
k γk

I

performs well in practice.

matrix B̃k. It goes without saying that the first m steps coincide

with the BFGS method.

gradient descent and quasi-newton methods 30

2. While BFGS stores potentially enormous matrices Bk of size n× n,

L-BFGS stores these matrices indirectly by storing only the last m
pairs δk, γk. It is apparent from Equality (6) that this information

suffices to recreate Bk while reducing the memory consumption to

only 2mn.

3. BFGS performs matrix multiplication Bk∇ f (xk), which is poten-

tially costly. L-BFGS instead computes a series of dot products101 101 Suppose a, b, c ∈ Rn and we want

to compute abTc. While the final
result does not depend on the order

of operations, the computational

requirements do. Computing as a(bTc)
we execute one dot product and one

vector-scalar product, which requires
of the order n operations and storage.

Computing as (abT)c we eventually

multiply a (typically) non-sparse n× n
matrix abT by c, which requires of the

order n2 operations and storage.

to obtain the same result. Hence matrix Bk is never really com-

puted but rather stored implicitly in δk, γk, while product Bk∇ f (xk)

is computed directly from this implicit description.

We consequently obtain the following two-loop recursion algorithm

to compute the L-BFGS step direction, which is then incorporated

into a master quasi-Newton method along with a line search.

Result: Bk · ∇ f (xk)

q = ∇ f (xk);

for i = k, . . . , k−m + 1 do

αi = ρiδ
T
i q

q = q− αiγi
end

r = B̃kq
for i = k−m + 1, . . . , k do

β = ρiγ
T
i r

r = r + δi(αi − β)

end

return r

Algorithm 1: L-BFGS step with a two-loop recursion.

gradient descent and quasi-newton methods 31

Summary

We conclude with a summary of presented methods.

1. The Newton method:

+ Performance is great close to the minimum.

- The method may not converge and may not even provide a de-

scent direction if the Hessian is not positively definite.

- The method may not converge even if the Hessian is positively

definite.

- Iteration steps are expensive102. 102 They require computing the

Hessian, storing and inverting it.

2. Adaptations to the Newton method:

+ Incorporated line search adjusts the step103. 103 Typically improves performance

and is standardly used for quasi-
Newton methods.+ A modification of the Hessian104.
104 In case of the Hessian not being

positive definite this modification
usually adjusts the iteration in an

appropriate way.

3. SR1: rank 1 update:

+ Stable, good performance.

+ Matrices Bk are good approximations of the Hessian.

+- Faster but less precise than the Newton method.

4. BFGS: rank 2 update:

+ Stable, superior performance.

+ Typically the method of choice.

+- Faster but less precise than the Newton method.

5. L-BFGS:

+ Fastest, requires much less memory.

- Discards most of the history.

The author would like to thank
students GG, AM, SP, DN, MK, BD,
and UZ for providing a series of
comments that improved this text.

6 References

[1] Bubeck, S., Convex optimization: Algorithms and complexity,

Foundations and Trends in Machine Learning 8.3-4 (2015): 231–

357.

[2] Boyd, S. and Vandenberghe, L., Convex Optimization, Cambridge

University Press, 2004.

[3] Nocedal J. and Wright S., Numerical Optimization, Springer-

Verlag New York, 2006.

	Introduction
	Properties of functions
	Guarantees for gradient descent
	Lower bounds for black box procedures
	Modifications of gradient descent
	Newton and quasi-Newton methods

