Žiga Virk
Research interests
-
PH
Persistent homology and related topics
-
A
Applications of topology and geometry
-
CG
Coarse geometry
-
W
Topology of wild spaces
- Past:
IL
Inverse limits of multivalued functions,
ET
Extension theory, and
NA
Nonlinear Analysis
Preprints
-
PH
H. Adams, S. Majhi, F. Manin, Ž. Virk, and N. Zava:
Lower Bounding the Gromov-Hausdorff distance in Metric Graphs.
A preprint on ArXiv.
-
PH
H. Adams, J. Bush, and Ž. Virk:
The connectivity of Vietoris-Rips complexes of spheres.
A preprint on ArXiv.
-
PH
CG
A. Mitra and Ž. Virk:
Geometric embeddings of spaces of persistence diagrams with explicit distortions.
A preprint on ArXiv.
-
CG
A. Garber, Ž. Virk, and N. Zava:
On the metric spaces of lattices and periodic point sets.
A preprint on ArXiv.
-
PH
B. Lemež and Ž. Virk:
Finite reconstruction with selective Rips complexes.
A preprint on ArXiv.
-
PH
B. Jelenc and Ž. Virk:
Detecting geodesic circles in hyperbolic surfaces with persistent homology.
A preprint.
Research papers
-
PH
Ž. Virk:
Contractibility of the Rips complexes of Integer lattices via local domination.
Transactions of the American Mathematical Society,
https://doi.org/10.1090/tran/9308.
-
PH
Ž. Virk:
Persistent Homology with Selective Rips complexes detects geodesic circles.
Mediterr. J. Math. 21, 170 (2024), https://doi.org/10.1007/s00009-024-02706-0.
-
PH
H. Adams and Ž. Virk:
Lower bounds on the homology of Vietoris-Rips complexes of hypercube graphs.
Bull. Malays. Math. Sci. Soc. 47, 72 (2024), https://doi.org/10.1007/s40840-024-01663-x.
-
PH
P. Goričan and Ž. Virk:
Critical edges in Rips complexes and persistence.
Mediterr. J. Math. 20, 326 (2023), https://doi.org/10.1007/s00009-023-02533-9.
-
PH
A. Franc and Ž. Virk:
Rigidity of terminal simplices in persistent homology.
Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117, 141 (2023), https://doi.org/10.1007/s13398-023-01473-z.
-
PH
M. Čufar and Ž. Virk:
Fast computation of persistent homology representatives with involuted persistent homology.
Foundations of Data Science, 2023, 5(4): 466-479, https://doi.org/10.3934/fods.2023006.
-
PH
H. Adams, F. Frick, and Ž. Virk:
Vietoris thickenings and complexes have isomorphic homotopy groups.
J Appl. and Comput. Topology 7, 221–241 (2023), https://doi.org/10.1007/s41468-022-00106-5.
-
PH
Ž. Virk:
Contractions in persistence and metric graphs,
Bull. Malays. Math. Sci. Soc. 45 (2022), 2003–2016, https://doi.org/10.1007/s40840-022-01368-z.
Free official view-only version
-
PH
Ž. Virk:
Footprints of geodesics in persistent homology,
Mediterranean Journal of Mathematics 19 (2022), https://doi.org/10.1007/s00009-022-02089-0.
Free official view-only version
-
PH
B. Lemež and Ž. Virk:
Reconstruction properties of selective Rips complexes
Glasnik Matematicki 57(2022), vol. 2, 73-88. https://doi.org/10.3336/gm.57.1.06.
-
PH
Ž. Virk:
A Counter-Example to Hausmann’s Conjecture
Found Comput Math 22 (2022), 469-475. https://doi.org/10.1007/s10208-021-09510-2.
Free official view-only version
-
PH
CG
A. Mitra and Ž. Virk:
The Space of Persistence Diagrams on n Points Coarsely Embeds into Hilbert Space.
Proc. Amer. Math. Soc. 149 (2021), 2693-2703. https://doi.org/10.1090/proc/15363.
Updated version on ArXiv and Corrigendum to “The space of persistence diagrams on points coarsely embeds into Hilbert space”.
-
PH
Ž. Virk:
Rips complexes as nerves and a Functorial Dowker-Nerve Diagram.
Mediterranean Journal of Mathematics 18 (2021).
https://doi.org/10.1007/s00009-021-01699-4
Free official view-only version
-
A
Dejan Tomažinčič, Žiga Virk, Peter Marijan Kink, Gregor Jerše, and Jernej Klemenc:
Predicting the Fatigue Life of an AlSi9Cu3 Porous Alloy Using a Vector-Segmentation Technique for a Geometric Parameterisation of the Macro Pores.
Metals 2021, 11(1), 72.
https://doi.org/10.3390/met11010072
-
PH
H. Edelsbrunner, Ž. Virk, and H. Wagner:
Topological data analysis in information space.
In ``Proc. 35th Ann. Sympos. Comput. Geom., 2019''.
http://doi.org/10.4230/LIPIcs.SoCG.2019.31
-
PH
Ž. Virk:
1-Dimensional Intrinsic Persistence of Geodesic Spaces
Journal of Topology and Analysis 12 (2020), 169-207.
https://doi.org/10.1142/S1793525319500444
Updated version on ArXiv.
-
PH
Ž. Virk:
Approximations of 1-Dimensional Intrinsic Persistence of Geodesic Spaces and Their Stability
Revista Matemática Complutense 32 (2019), 195-213.
https://doi.org/10.1007/s13163-018-0275-4
Free official view-only version
-
PH
H. Edelsbrunner, Ž. Virk, and H. Wagner:
Smallest enclosing spheres and Chernoff points in Bregman geometry.
In ``Proc. 34th Ann. Sympos. Comput. Geom., 2018''.
http://doi.org/10.4230/LIPIcs.SoCG.2018.35
-
W
Ž. Virk and A. Zastrow:
A new topology on the universal path space.
Topology and its Applications 231(2017), 186-196.
https://doi.org/10.1016/j.topol.2017.09.015
-
CG
K. Austin and Ž. Virk:
Higson Compactification and Dimension Raising.
Topology and its Applications 215(2017), 45-57.
http://dx.doi.org/10.1016/j.topol.2016.10.005
Updated version on ArXiv.
-
CG
K. Austin and Ž. Virk:
Coarse metric approximation.
Topology and its Applications 202(2016), 194-204.
http://dx.doi.org/10.1016/j.topol.2016.01.010
-
CG
J. Dydak, and Ž. Virk:
Preserving coarse properties.
Revista Matemática Complutense 29(2016), 191-206.
https://doi.org/10.1007/s13163-015-0182-x
-
CG
J. Dydak, and Ž. Virk:
Inducing maps between Gromov boundaries.
Mediterranean Journal of Mathematics 13(2016), 2733-2752.
https://doi.org/10.1007/s00009-015-0650-z
Free official view-only version
-
IL
A. Vavpetič and Ž. Virk:
The right homotopy shift in the fundamental group of inverse limits.
Topology and its Applications 208(2016), 40-54
http://dx.doi.org/10.1016/j.topol.2016.05.007.
-
IL
A. Vavpetič and Ž. Virk:
On the fundamental group of inverse limits.
Bulletin of the Malaysian Mathematical Sciences Society 40(2017), 941-957.
https://doi.org/10.1007/s40840-016-0327-1
Free official view-only version
-
NA
M. Cencelj, D. Repovš, and Ž. Virk:
Multiple perturbations of a singular eigenvalue problem.
Nonlinear Analysis: Theory, Methods and Applications 119(2015), 37-45.
http://dx.doi.org/10.1016/j.na.2014.07.015
-
W
Ž. Virk and A. Zastrow:
The comparison of topologies related to various concepts of generalized covering spaces.
Topology and its Applications 170C(2014), 52-62.
http://dx.doi.org/10.1016/j.topol.2014.03.011
-
CG
T. Miyata and Ž. Virk:
Dimension-Raising Maps in a Large Scale.
Fundamenta Mathematicae 223 (2013), 83-97.
https://www.impan.pl/en/publishing-house/journals-and-series/fundamenta-mathematicae/all/223/1/88840/dimension-raising-maps-in-a-large-scale
-
W
Ž. Virk and A. Zastrow:
A homotopically Hausdorff space which does not admit a generalized universal covering space.
Topology and its Applications 160(2013), 656-666.
http://dx.doi.org/10.1016/j.topol.2013.01.011
-
W
Ž. Virk:
Realizations of Countable Groups as Fundamental Groups of Compacta.
Mediterranean Journal of Mathematics 10(2013), 1573-1589. http://dx.doi.org/10.1007/s00009-013-0274-0
-
W
D. Repovš, W. Rosicki, Ž. Virk, and A. Zastrow:
On Minc' sheltered middle path.
Topology and its Applications 159(2012), 2609-2620.
http://dx.doi.org/10.1016/j.topol.2012.04.008
-
CG
M. Cencelj, J. Dydak, A. Vavpetič, and Ž. Virk:
A combinatorial approach to coarse geometry.
Topology and its Applications 159(2012), 646-658.
http://dx.doi.org/10.1016/j.topol.2011.10.012
-
ET
Ž. Virk:
A generalization of the Levin-Rubin-Schapiro factorization theorem.
Topology and its Applications 159(2012), 695-703.
http://dx.doi.org/10.1016/j.topol.2011.10.018
-
W
Ž. Virk:
Homotopical smallness and closeness.
Topology and its Applications 158(2011), 360-378. http://dx.doi.org/10.1016/j.topol.2010.11.010
-
W
H. Fischer, D. Repovš, Ž. Virk, and A. Zastrow:
On semilocally simply connected spaces.
Topology and its Applications 158(2011), 397-408. http://dx.doi.org/10.1016/j.topol.2010.11.017
-
CG
J. Dydak and Ž. Virk:
An alternate proof that the fundamental group of a Peano continuum is finitely presented if the group is countable.
Glasnik Matematicki 46(2011), no.2, http://web.math.hr/glasnik/vol_46/vol46no2.html
-
W
Ž. Virk:
Small loop spaces.
Topology and its Applications 157(2010), 451-455. http://dx.doi.org/10.1016/j.topol.2009.10.003
-
ET
M. Cencelj, J. Dydak, J. Smrekar, A. Vavpetič, and Ž. Virk:
Algebraic properties of quasi-finite complexes.
Fundamenta Mathematicae 197(2007), 67-80.
-
ET
M. Cencelj, J. Dydak, J. Smrekar, A. Vavpetič, and Ž. Virk:
Compact maps and quasi-finite complexes.
Topology and its Applications 154(2007), 3005-3020. http://dx.doi.org/10.1016/j.topol.2007.06.015